

Lecture Notes in Computer Science 3282
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Venkatesan Guruswami

List Decoding of
Error-Correcting Codes

Winning Thesis of the
2002 ACM Doctoral Dissertation Competition

13

Author

Venkatesan Guruswami
University of Washington
Department of Computer Science and Engineering
Seattle, WA 98195-2350, USA
E-mail: venkat@cs.washington.edu

Library of Congress Control Number: 2004115727

CR Subject Classification (1998): E.4, F.2.2, H.1.1, G.2.1

ISSN 0302-9743
ISBN 3-540-24051-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11365877 06/3142 5 4 3 2 1 0

To my parents

Foreword

How can one exchange information effectively when the medium of commu-
nication introduces errors? This question has been investigated extensively
starting with the seminal works of Shannon (1948) and Hamming (1950),
and has led to the rich theory of “error-correcting codes”. This theory has
traditionally gone hand in hand with the algorithmic theory of “decoding”
that tackles the problem of recovering from the errors efficiently. This thesis
presents some spectacular new results in the area of decoding algorithms for
error-correcting codes. Specifically, it shows how the notion of “list-decoding”
can be applied to recover from far more errors, for a wide variety of error-
correcting codes, than achievable before.

A brief bit of background: error-correcting codes are combinatorial struc-
tures that show how to represent (or “encode”) information so that it is re-
silient to a moderate number of errors. Specifically, an error-correcting code
takes a short binary string, called the message, and shows how to transform
it into a longer binary string, called the codeword, so that if a small number
of bits of the codeword are flipped, the resulting string does not look like any
other codeword. The maximum number of errors that the code is guaranteed
to detect, denoted d, is a central parameter in its design. A basic property of
such a code is that if the number of errors that occur is known to be smaller
than d/2, the message is determined uniquely. This poses a computational
problem, called the decoding problem: compute the message from a corrupted
codeword, when the number of errors is less than d/2. While naive decod-
ing algorithms run in time exponential in d, sophisticated algorithms with
polynomial running time have been found for a variety of codes, enabling
widespread usage of error-correcting codes.

The principal concern of this thesis is the question: “What happens when
the number of errors that occur is more than d/2?” This question is impor-
tant for practical purposes, so that one can extract more out of any given
communication channel. Furthermore, the central nature of error-correcting
codes in the theory of computer science makes this question an important
one in this domain as well. It is well known that if the number of errors
exceed d/2, then the message may potentially not be recoverable uniquely.
However, it is conceivable that one can pin down a small list of candidate
messages that include the intended message. This possibility motivated Elias

VIII Foreword

(1957) and Wozencraft (1958) to define the list-decoding problem: “Given a
corrupted codeword and an error parameter e, compute a list of all codewords
that differ from the corrupted word in most e places.”

Even though the list-decoding problem had been in existence for several
decades, it did not meet with algorithmic success till 1997. In the last ten years
or so, however, this area has seen some remarkable advances, and these results
represent the original contributions of this thesis. List-decoding algorithms
are presented for a wide variety of codes considered in the literature including
“Reed-Solomon codes”, “algebraic-geometry codes”, “concatenated codes”,
and “graph-theoretic codes”. In addition to describing new results, the thesis
also serves as a valuable source of reference on list-decoding. It introduces the
topic gently, re-examining the definition, explaining why it is interesting and
then describing the central combinatorial and algorithmic problems in this
domain. It includes a nice survey of prior combinatorial work most of which
is scattered in the literature. After covering the new algorithmic results, the
thesis includes an excellent survey of the many applications of list-decoding in
theoretical computer science including “hardness amplification”, “extracting
randomness”, and “pseudorandomness”.

The style of the exposition is crisp and the enormous amount of informa-
tion is presented in a clear, structured form. This thesis will be valuable to
readers interested in mathematical aspects of computer science or communi-
cation.

August 2004 Madhu Sudan
Professor of Computer Science

MIT, Cambridge, MA, USA.

Preface

Error-correcting codes are combinatorial objects designed to cope with the
problem of reliable transmission of information on a noisy channel. A funda-
mental algorithmic challenge in coding theory and practice is to efficiently
decode the original transmitted message even when a few symbols of the
received word are in error. The naive search algorithm runs in exponential
time, and several classical polynomial time decoding algorithms are known
for specific code families. Traditionally, however, these algorithms have been
constrained to output a unique codeword. Thus they faced a “combinatorial
barrier” and could only correct up to d/2 errors, where d is the minimum
distance of the code.

An alternate notion of decoding called list decoding, proposed indepen-
dently by Elias and Wozencraft in the late 1950s, allows the decoder to output
a list of all codewords that differ from the received word in a certain number
of positions. Even when constrained to output a relatively small number of
answers, list decoding permits recovery from errors well beyond the d/2 bar-
rier, and opens up the possibility of meaningful error correction from large
amounts of noise. However, for nearly four decades after its conception, this
potential of list decoding was largely untapped due to the lack of efficient
algorithms to list decode beyond d/2 errors for useful families of codes.

This book presents a detailed investigation of list decoding, and proves
its potential, feasibility, and importance as a combinatorial and algorithmic
concept. The results discussed in the book are divided into three parts: the
first one on combinatorial results, the second on polynomial time list decoding
algorithms, and the third on applications. We describe each of the parts in
further detail below.

Part I deals with the combinatorics of list decoding and attempts to
sharpen our understanding of the potential and limits of list decoding, and its
relation to more classical coding-theoretic parameters like the rate and mini-
mum distance. A combinatorial bound called the Johnson bound asserts that
codes with large minimum distance have a large list decoding radius, and this
raises algorithmic questions on list decoding such codes from a large number
of errors for central codes that are known to have good distance properties.
This is not the only approach to obtaining good list decodable codes, and in
fact directly optimizing the list decoding radius leads to better trade-offs as

X Preface

a function of the rate of the code (as can be shown by applications of the
probabilistic method). Part I can be summed up with the statement: good
codes with excellent combinatorial list decodability properties exist. This sets
the stage for the algorithmic results of Part II by highlighting what one can
and cannot hope to do with list decoding, and poses the challenge of tapping
the potential of list decoding with efficient algorithms.

Part II comprises the crux of the book, namely its algorithmic results,
which were lacking in the early works on list decoding. The algorithmic re-
sults attempt to “match” the combinatorial bounds with explicit code con-
structions and efficient decoding algorithms. Our algorithmic results include:

– Efficient list decoding algorithms for classically studied codes such as Reed-
Solomon codes and algebraic-geometric codes. In particular, building upon
an earlier algorithm by Sudan, we present the first polynomial time algo-
rithm to decode Reed-Solomon codes beyond d/2 errors for every value of
the rate.

– A new soft list decoding algorithm for Reed-Solomon and algebraic-
geometric codes, and novel decoding algorithms for concatenated codes
based on it.

– New code constructions using concatenation and/or expander graphs that
have good (and sometimes near-optimal) rates and are efficiently list de-
codable from extremely large amounts of noise.

– Error-correcting codes with good (and sometimes near-optimal rates) for
list decoding from erasures.

Part II can be summed up with the statement: there exist “explicit” con-
structions of “good” codes together with efficient list decoding algorithms.

In Part III, we discuss some applications of the results and techniques from
earlier chapters to domains both within and outside of coding theory. Using
an expander-based construction in the same spirit as our construction for
list decoding, we get a significant improvement over a prior result for unique
decoding. Specifically, we construct linear time encodable and decodable codes
that match the trade-off between rate and error-correction radius achieved by
the best known constructions with polynomial time decoding (and in fact the
trade-off is almost the best possible over large alphabets). This constitutes a
vast improvement compared with previous constructions of linear time codes
that could only correct a tiny fraction of errors with positive rates. The notion
of list decoding turns out to be central to certain contexts in theoretical
computer science outside of coding theory, for example in complexity theory,
cryptography, and algorithms. For these applications unique decoding does
not suffice, and moreover, for several of them one needs efficient list decoding
algorithms.

A detailed chapter by chapter description of the contents can be found in
Section 2.3.

Preface XI

Acknowledgments

We know too much for one man to know much.
J. Robert Oppenheimer

This monograph is a revised version of my doctoral dissertation, written
under the supervision of Madhu Sudan and submitted to MIT in August 2001.
I am grateful to MIT for nominating my Ph.D. thesis for the ACM Doctoral
Dissertation Award competition, and to ACM and the awards committee for
awarding the honor to my dissertation.

My first and foremost acknowledgment is to my advisor Madhu Sudan.
When I made a decision to go to MIT for grad school in the spring of 1997, I
was not aware that Madhu Sudan would be joining its faculty that Fall, so it
was quite serendipitous that I got him as my advisor. While I found MIT to be
every bit the wonderful place I had anticipated it to be and more, Madhu was
the most important reason my academic experience at MIT was so enjoyable
and fulfilling. For the wonderful collaboration which led to several of the key
chapters of my thesis, for all his patient advice, help and support on matters
technical and otherwise, and for all the things I learned from him during my
stay at MIT and continue to do so, I will be forever grateful to Madhu.

I am most grateful to Madhu Sudan, Johan H̊astad, Piotr Indyk, Amit
Sahai, and David Zuckerman for their collaboration which led to several of
the results discussed in this monograph. Collectively, this is as much, if not
more, their book as it is mine. I also wish to thank the several other people
with whom I have had useful discussions on coding theory and related top-
ics. These include Noga Alon, Sanjeev Arora, Sasha Barg, Moses Charikar,
Yevgeniy Dodis, Peter Elias, Sanjeev Khanna, Subhash Khot, Ralf Koetter,
Ravi Kumar, Hendrik Lenstra, Daniele Micciancio, Jaikumar Radhakrish-
nan, Amin Shokrollahi, D. Sivakumar, Dan Spielman, Luca Trevisan, Salil
Vadhan, and Alex Vardy, though undoubtedly I have left out several others.

A special thanks is due to the members of my thesis reading committee
at MIT: Peter Elias, Dan Spielman, and Madhu Sudan. Technically, it was
only appropriate that I had these three people on my committee: Peter first
defined the notion of list decoding; Madhu discovered the first non-trivial
efficient list decoding algorithm; and Dan constructed the first linear-time
codes (the subject of Chapter 11 of this book). I regret that I will not be
able to present a personal copy of the book to Peter, who sadly left us a few
months after I submitted my thesis to MIT.

It is with really fond memories that I acknowledge the stimulating working
atmosphere and the company of a great group of friends and colleagues that
I found in MIT’s theory group. The good time I had at MIT owes a lot to the
wonderful student body I had the privilege of being a part of. I would like
to thank Salil, Yevgeniy, Eric, Amit, Raj, Anna, Sofya, Adam K., Adam S.,
Maria, Matthias, Feldman, Abhi, Rocco, Daniele, Alantha, Ryan, Prahladh,

XII Preface

and many others, for numerous conversations on all sorts of topics, and for
making my life at MIT LCS so much fun. I was lucky that Luca Trevisan was
at MIT the year I started; from him I learned a lot, and with him (and Danny
Lewin and Madhu) I shared my first research experience in graduate school.
In my last year at MIT I benefited immensely from the time I spent working
and hanging out with Piotr Indyk, for which I sincerely thank him. I relish
very much our continuing collaboration on expander codes. Lars Engebretsen,
the other member of our espresso trio, also contributed greatly to making my
final year at MIT so memorable.

My sincere thanks to the theory group staff, and in particular Joanne
Talbot and Be Blackburn, for their good cheer and all their administrative
and other help.

It is a pleasure to acknowledge my current academic home, University of
Washington CSE, for its warm and congenial atmosphere, with special thanks
to my theory colleagues Paul Beame, Anna Karlin and Richard Ladner for
their support and company.

A huge thanks to all my friends whom I met at various junctures of my life.
True friends are those who take pride in your achievements, and I am grateful
that I have several who meet this definition and who are an inseparable part
of my life.

I owe a lot to two professors from college: C. Pandu Rangan for encourag-
ing me in every possible way and getting me started on research well before
I started grad school; and S. A. Choudum whose wonderful Graph Theory
course sparked my interest in algorithmic graph theory and eventually theo-
retical computer science.

My most important acknowledgment is to my close and loving family: my
parents and my sister Shantha, who have filled my life with joy and who mean
the world to me. Many thanks to Vaishnavi, my most fortunate discovery, for
her cheer and providing useful distractions during the course of this revision.

Words cannot express my thanks to my parents for all that they have
gone through and done for me. So, of all the sentences in this book none was
easier to write than this one: To my parents, this book is dedicated with love.

Seattle, Washington Venkatesan Guruswami
August 2004

I gratefully acknowledge the fellowships and grants that supported my re-
search at MIT. My research was supported in part by funding from NSF
CCR 9875511, NSF CCR 9912342, and NTT Award MIT 2001-04, and in
part by an IBM Graduate Fellowship.

Contents

1 Introduction . 1
1.1 Basics of Error-Correcting Codes . 1
1.2 The Decoding Problem for Error-Correcting Codes 4
1.3 List Decoding . 7

1.3.1 Definition . 7
1.3.2 Is List Decoding a Useful Relaxation of Unique

Decoding? . 8
1.3.3 The Challenge of List Decoding . 9
1.3.4 Early Work on List Decoding . 10

1.4 Contributions of This Work . 10
1.5 Background Assumed of the Reader . 13
1.6 Comparison with Doctoral Thesis Submitted to MIT 13

2 Preliminaries and Monograph Structure 15
2.1 Preliminaries and Definitions . 15

2.1.1 Basic Definitions for Codes . 15
2.1.2 Code Families . 17
2.1.3 Linear Codes . 17
2.1.4 Definitions Relating to List Decoding 18
2.1.5 Commonly Used Notation . 20

2.2 Basic Code Families . 20
2.2.1 Reed-Solomon Codes . 20
2.2.2 Reed-Muller Codes . 21
2.2.3 Algebraic-Geometric Codes . 22
2.2.4 Concatenated Codes . 22
2.2.5 Number-Theoretic Codes . 23

2.3 Detailed Description of Book Chapters . 24
2.3.1 Combinatorial Results . 24
2.3.2 Algorithmic Results . 26
2.3.3 Applications . 28
2.3.4 Conclusions . 29
2.3.5 Dependencies Among Chapters . 29

XIV Contents

Part I Combinatorial Bounds

3 Johnson-Type Bounds and Applications to List Decoding . 33
3.1 Introduction . 33
3.2 Definitions and Notation . 34
3.3 The Johnson Bound on List Decoding Radius 35

3.3.1 Proof of Theorem 3.1 . 37
3.3.2 Geometric Lemmas . 39

3.4 Generalization in Presence of Weights . 41
3.5 Notes . 43

4 Limits to List Decodability . 45
4.1 Introduction . 45
4.2 Informal Description of Results . 46
4.3 Formal Description of Results . 47

4.3.1 The Result for Non-linear Codes 47
4.3.2 Definitions . 47
4.3.3 Statement of Results . 48

4.4 Super-constant List Size at Johnson Radius 50
4.4.1 The Basic Construction . 50
4.4.2 Related Constructions . 55
4.4.3 The Technical “Linear-Algebraic” Lemma 56

4.5 Super-polynomial List Size Below Minimum Distance 60
4.5.1 Proof of Theorem 4.10 . 60

4.6 Explicit Constructions with Polynomial-Sized Lists 62
4.6.1 Fourier Analysis and Group Characters 62
4.6.2 Idea Behind the Construction . 63
4.6.3 Proof of Theorem 4.8 . 64
4.6.4 Proof of Theorem 4.9 . 67
4.6.5 Proof of Theorem 4.16 . 68

4.7 Super-polynomial List Sizes at the Johnson Bound 71
4.7.1 Proof Idea . 71
4.7.2 The Technical Proof . 72
4.7.3 Unconditional Proof of Tightness of Johnson Bound . . 76

4.8 Notes and Open Questions . 76

5 List Decodability Vs. Rate . 79
5.1 Introduction . 79
5.2 Definitions . 80
5.3 Main Results . 81

5.3.1 Basic Lower Bounds . 81
5.3.2 An Improved Lower Bound for Binary Linear Codes . . 85
5.3.3 Upper Bounds on the Rate Function 88
5.3.4 “Optimality” of Theorem 5.8 . 89

Contents XV

5.4 Prelude to Pseudolinear Codes . 90
5.5 Notes . 91

Part II Code Constructions and Algorithms

6 Reed-Solomon and Algebraic-Geometric Codes 95
6.1 Introduction . 95

6.1.1 Reed-Solomon Codes . 96
6.1.2 Algebraic-Geometric Codes . 97
6.1.3 Soft-Decision Decoding Algorithms 98

6.2 Reed-Solomon Codes . 98
6.2.1 Reformulation of the Problem . 98
6.2.2 Informal Description of the Algorithm 100
6.2.3 Formal Description of the Algorithm 102
6.2.4 Correctness of the Algorithm . 103
6.2.5 A “Geometric” Example . 105
6.2.6 Results for Specific List Sizes . 108
6.2.7 Runtime of the Algorithm . 111
6.2.8 Main Theorems About Reed-Solomon List Decoding . . 113
6.2.9 Some Further Consequences . 114
6.2.10 Weighted Polynomial Reconstruction and Soft

Decoding of RS Codes . 117
6.3 Algebraic-Geometric Codes . 121

6.3.1 Overview . 121
6.3.2 Algebraic-Geometric Codes: Preliminaries 122
6.3.3 List Decoding Algorithm for Algebraic-Geometric

Codes . 126
6.3.4 Root Finding over Algebraic Function Fields 129
6.3.5 An Explicit List Decoding Algorithm 132
6.3.6 Analysis of the Algorithm . 134
6.3.7 Weighted List Decoding of AG-codes 136
6.3.8 Decoding Up to the “q-ary Johnson Radius” 137
6.3.9 List Decodability Offered by the Best-Known

AG-codes . 138
6.4 Concluding Remarks and Open Questions 141
6.5 Bibliographic Notes . 142

7 A Unified Framework for List Decoding of Algebraic
Codes . 147
7.1 Introduction . 147

7.1.1 Overview . 148
7.2 Preliminaries . 149
7.3 Ideal-Based Codes . 151

7.3.1 Examples of Ideal-Based Codes . 151

XVI Contents

7.4 Properties of Ideal-Based Codes . 152
7.4.1 Axioms and Assumptions . 152
7.4.2 Distance Property of Ideal-Based Codes 153

7.5 List Decoding Ideal-Based Codes . 153
7.5.1 High Level Structure of the Decoding Algorithm 154
7.5.2 Formal Description of the Decoding Algorithm 155
7.5.3 Further Assumptions on the Underlying Ring and

Ideals . 156
7.5.4 Analysis of the List Decoding Algorithm 156
7.5.5 Performance of the List Decoding Algorithm 159
7.5.6 Obtaining Algorithms for Reed-Solomon and

AG-codes . 160
7.6 Decoding Algorithms for CRT Codes . 161

7.6.1 Combinatorial Bounds on List Decoding 162
7.6.2 Weighted List Decoding Algorithm 165
7.6.3 Applications to “Interesting” Weight Settings 169

7.7 GMD Decoding for CRT Codes . 171
7.8 Bibliographic Notes . 174

8 List Decoding of Concatenated Codes . 177
8.1 Introduction . 177
8.2 Context and Motivation of Results . 178
8.3 Overview of Results . 179
8.4 Decoding Concatenated Codes with Inner Hadamard Code . . 180

8.4.1 Reed-Solomon Concatenated with Hadamard Code . . . 184
8.4.2 AG-code Concatenated with Hadamard Code 186
8.4.3 Consequence for Highly List Decodable Codes 187

8.5 Decoding a General Concatenated Code with Outer
Reed-Solomon or AG-code . 187
8.5.1 A Relevant Combinatorial Result 188
8.5.2 The Formal Decoding Algorithm and Its Analysis 192
8.5.3 Consequence for Highly List Decodable Codes 195

8.6 Improved Rate Using Tailor-Made Concatenated Code 198
8.6.1 The Inner Code Construction . 199
8.6.2 The Concatenated Code and the Decoding Algorithm . 202

8.7 Open Questions . 205
8.8 Bibliographic Notes . 206

9 New, Expander-Based List Decodable Codes 209
9.1 Introduction . 209
9.2 Overview of Results and Techniques . 210

9.2.1 Main Results . 210
9.2.2 Our Techniques . 213
9.2.3 A Useful Definition . 215

Contents XVII

9.3 Pseudolinear Codes: Existence Results and Properties 215
9.3.1 Pseudolinear (Code) Families . 216
9.3.2 Probabilistic Constructions of Good, List Decodable

Pseudolinear Codes . 218
9.3.3 Derandomizing Constructions of Pseudolinear Codes . . 221
9.3.4 Faster Decoding of Pseudolinear Codes over Large

Alphabets . 225
9.4 The Basic Expander-Based Construction of List Decodable

Codes . 227
9.4.1 Definition of Required “Expanders” 228
9.4.2 Reduction of List Decoding to List Recoverability

Using Dispersers . 228
9.4.3 Codes of Rate Ω(ε2) List Decodable to a Fraction

(1− ε) of Errors . 231
9.4.4 Better Rate with Sub-exponential Decoding 234

9.5 Constructions with Better Rate Using Multi-concatenated
Codes . 235
9.5.1 The Basic Multi-concatenated Code 236
9.5.2 Codes of Rate Ω(ε) with Sub-exponential List

Decoding for a Fraction (1− ε) of Errors 239
9.5.3 Binary Codes of Rate Ω(ε3) with Sub-exponential

List Decoding Up to a Fraction (1/2− ε) of Errors . . . 242
9.6 Improving the Alphabet Size: Juxtaposed Codes 243

9.6.1 Intuition . 244
9.6.2 The Actual Construction . 245

9.7 Notes . 249

10 List Decoding from Erasures . 251
10.1 Introduction . 251
10.2 Overview . 252
10.3 Definitions . 253

10.3.1 Comment on Combinatorial Vs. Algorithmic Erasure
List-Decodability . 254

10.4 Relation to Generalized Hamming Weights 254
10.5 Erasure List-Decodability and Minimum Distance 256
10.6 Combinatorial Bounds for Erasure List-Decodability 257

10.6.1 Discussion . 257
10.6.2 Lower Bound on R̃L(p) . 258
10.6.3 Lower Bound on R̃lin

L (p) . 259
10.6.4 Upper Bound on R̃L(p) . 262
10.6.5 Improved Upper Bound for R̃lin

L (p) 265
10.6.6 Provable Separation Between Erasure List-Decodable

Linear and Non-linear Codes . 265

XVIII Contents

10.7 A Good Erasure List-Decodable Binary Code Construction . . 265
10.7.1 Context . 265
10.7.2 The Formal Result . 266
10.7.3 Obtaining Near-Linear Encoding and Decoding

Times . 268
10.7.4 The ε2 “Rate Barrier” for Binary Linear Codes 270

10.8 Better Results for Larger Alphabets Using Juxtaposed
Codes . 272
10.8.1 Main Theorem . 272
10.8.2 Improving the Decoding Time in Theorem 10.22 275

10.9 Concluding Remarks . 276
10.10 Bibliographic Notes . 277

Part III Applications

11 Linear-Time Codes for Unique Decoding 283
11.1 Context and Introduction . 283
11.2 Background on Expanders . 284
11.3 Linear-Time Encodable and Decodable Codes:

Construction I . 285
11.3.1 Codes with Rate Ω(ε2) Decodable Up to a Fraction

(1/2− ε) of Errors . 286
11.3.2 Binary Codes with Rate Ω(ε4) Decodable Up to a

Fraction (1/4− ε) of Errors . 288
11.4 Linear-Time Codes with Near-Optimal Rate 289

11.4.1 High-Level View of the Construction 289
11.4.2 Linear-Time Codes with Rates Close to 1 291
11.4.3 Linear-Time Error-Correcting Codes Meeting the

Singleton Bound . 294
11.5 Linear-Time Encodable Binary Codes Meeting the Zyablov

Bound . 297
11.6 Bibliographic Notes . 298

12 Sample Applications Outside Coding Theory 299
12.1 An Algorithmic Application: Guessing Secrets 299

12.1.1 Formal Problem Description . 300
12.1.2 An Explicit Strategy with O(log N) Questions 302
12.1.3 An Efficient Algorithm to Recover the Secrets 304
12.1.4 The Case of More than Two Secrets 308
12.1.5 An Efficient “Partial Solution” for the k-Secrets

Game . 309
12.2 Applications to Complexity Theory . 310

12.2.1 Hardcore Predicates from One-Way Permutations 311
12.2.2 Hardness Amplification of Boolean Functions 313

Contents XIX

12.2.3 Average-Case Hardness of Permanent 315
12.2.4 Extractors and Pseudorandom Generators 315
12.2.5 Membership Comparable Sets . 318
12.2.6 Inapproximability of NP Witnesses 320

12.3 Applications to Cryptography . 324
12.3.1 Cryptanalysis of Certain Block Ciphers 324
12.3.2 Finding Smooth Integers . 325
12.3.3 Efficient Traitor Tracing . 325

13 Concluding Remarks . 329
13.1 Summary of Contributions . 329
13.2 Directions for Future Work . 330

13.2.1 Some Specific Open Questions . 330
13.2.2 Construction of “Capacity-Approaching” List

Decodable Codes . 331

A GMD Decoding of Concatenated Codes 333
A.1 Proof . 333

References . 337

Index . 349

1 Introduction

In the everyday situation where one party wishes to communicate a message
to another distant party, more often than not, the intervening communication
channel is “noisy” and distorts the message during transmission. The prob-
lem of reliable communication of information over such a noisy channel is a
fundamental and challenging one. Error-correcting codes (or simply, codes)
are objects designed to cope with this problem. They are now ubiquitous and
found in all walks of life, ranging from basic home and office appliances like
compact disc players and computer hard disk drives to deep space communi-
cation.

The theory of error-correcting codes, which dates back to the seminal
works of Shannon [160] and Hamming [93], is a rich, beautiful and to-date
flourishing subject that benefits from techniques developed in a wide variety
of disciplines such as combinatorics, probability, algebra, geometry, number
theory, engineering, and computer science, and in turn has diverse applica-
tions in a variety of areas.

In this work, we study the performance of error-correcting codes in the
presence of very large amounts of noise, much more than they were “tra-
ditionally designed” to tolerate. This situation poses significant challenges
not addressed by the classical decoding procedures. We address these chal-
lenges with a focus on the algorithmic issues that arise therein. Specifically,
we establish limits on what can be achieved in such a high-noise situation,
and present algorithms for classically studied codes that decode significantly
more errors than all previously known methods. We also present several novel
code constructions designed to tolerate extremely large amounts of noise, to-
gether with efficient error-correcting procedures. The key technical notion
underlying our work is “List Decoding”. This notion will be defined, and our
contributions will be explained in further detail, later on in this chapter.

1.1 Basics of Error-Correcting Codes

Informally, error-correcting codes provide a systematic way of adding redun-
dancy to a message before transmitting it, so that even upon receipt of a
somewhat corrupted message, the redundancy in the message enables the re-
ceiver to figure out the original message that the sender intended to transmit.

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 1-14, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 1 Introduction

The principle of redundant encoding is in fact a familiar one from every-
day language. The set of all words in English is a small subset of all possible
strings, and a huge amount of redundancy is built into the valid English
words. Consequently, a misspelling in a word usually changes it into some
incorrect word (i.e., some letter sequence that is not a valid word in En-
glish), thus enabling detection of the spelling error. Moreover, the resulting
misspelled word quite often resembles the correct word more than it resem-
bles any other word, thereby permitting correction of the spelling error. The
“ispell” program used to spell-check this book could not have worked but
for this built-in redundancy of the English language! This simple principle of
“built-in redundancy” is the essence of the theory of error-correcting codes.

In order to be able to discuss the context and contributions of our work, we
need to define some basic notions concerning error-correcting codes.1 These
are discussed below.

– Encoding. An encoding function with parameters k, n is a function E :
Σk → Σn that maps a message m consisting of k symbols over some
alphabet Σ (for example, the binary alphabet Σ = {0, 1}) into a longer,
redundant string E(m) of length n over Σ. The encoded string E(m) is
referred to as a codeword.

– Error-Correcting code. The error-correcting code itself is defined to be the
image of the encoding function. In other words, it is the set of all codewords
which are used to encode the various messages.

– Rate. The ratio of the number of information symbols to the length of the
encoding — the quantity k/n in the above definition — is called the rate
of the code. It is an important parameter of a code, as it is a measure of
the amount of redundancy added by the encoding.

– Decoding. Before transmitting a message, the sender of the message first
encodes it using the error-correcting code and then transmits the resulting
codeword along the channel. The receiver gets a possibly distorted copy
of the transmitted codeword, and needs to figure out the original message
which the sender intended to communicate. This is done via a decoding
function, D : Σn → Σk, that maps strings of length n (i.e., noisy re-
ceived words) to strings of length k (i.e., what the decoder thinks was the
transmitted message).

– Distance. The minimum distance (or simply, distance) of a code quantifies
how “far apart” from each other different codewords are. Define the dis-
tance between words as the number of coordinates at which they differ. The
(minimum) distance of a code is then defined to be the smallest distance
between two distinct codewords.

Historical Interlude: We now briefly discuss the history behind the defini-
tion of these concepts. The notions of encoding, decoding, and rate appeared

1Here we only define the most basic notions. Further definitions appear in Chap-
ter 2.

1.1 Basics of Error-Correcting Codes 3

in the work of Shannon [160]. The notions of an error-correcting code itself,
and that of the distance of a code, originated in the work of Hamming [93].

Shannon proposed a stochastic model of the communication channel, in
which distortions are described by the conditional probabilities of the trans-
formation of one symbol into another. For every such channel, Shannon
proved that there exists a precise real number, which he called the chan-
nel’s capacity, such that in order to achieve reliable communication over the
channel, one has to use a encoding function with rate less than its capacity.
He also proved the converse result — namely, for every rate below capacity,
there exist encoding and decoding schemes which can used to achieve reli-
able communication, with a probability of miscommunication as small as one
desires. This remarkable result, which precisely characterized the amount of
redundancy needed to cope with a noisy channel, marked the birth of infor-
mation theory and coding theory.

However, Shannon only proved the existence of good coding schemes at
any rate below capacity, and it was not at all clear how to perform the
required encoding or decoding efficiently. Moreover, the stochastic description
of the channel did not highlight any simple criterion of when a certain code
is good.

2E(m)

d

(d−1)/2E(m)1

Fig. 1.1. A code of minimum distance d. Spheres of radius (d − 1)/2 around the
codewords are all disjoint.

Intuitively, a good code should be designed so that the encoding of one
message will not be confused with that of another, even if it is somewhat
distorted by the channel. Now, if the various codewords are all far apart
from one another, then even if the channel distorts a codeword by a small
amount, the resulting string will still resemble the original codeword much
more than any other codeword, and can therefore be “decoded” to the cor-

4 1 Introduction

rect codeword. In his seminal work, Hamming [93] realized the importance
of quantifying how far apart various codewords are, and defined the above
notion of distance between words, which is now appropriately referred to as
Hamming distance. He also formally defined the notion of an error-correcting
code as a collection of strings no two of which are close to each other, and
defined the (minimum) distance of a code as the smallest distance between
two distinct codewords. This notion soon crystallized as a fundamental pa-
rameter of an error-correcting code. Figure 1.1 depicts an error-correcting
code with minimum distance d, which, as the figure illustrates, implies that
Hamming balls of radius (d− 1)/2 around each codeword are all disjoint. In
this model, an optimal code is one with the largest minimum distance among
all codes that have a certain number of codewords. As Figure 1.1 indicates,
finding a good code in this model is a particular kind of “sphere-packing”
problem. Unlike Shannon’s statistical viewpoint, this combinatorial formula-
tion permitted a variety of techniques from combinatorics, algebra, geometry,
and number theory to be applied in attempts to solve the problem. In turn,
this led to the burgeoning of coding theory as a discipline.

1.2 The Decoding Problem for Error-Correcting Codes

The two main algorithmic tasks associated with the use of an error-correcting
code are implementing the encoding function E and the decoding function D.

2E(m)

d

(d−1)/2E(m)1
r

Fig. 1.2. A code of distance d cannot correct d/2 errors. The figure shows a received
word r at a distance of d/2 from two codewords corresponding to the encodings of
m1 and m2. In such a case, r could have resulted from d/2 errors affecting either
E(m1) or E(m2).

1.2 The Decoding Problem for Error-Correcting Codes 5

The former task is usually easy to perform efficiently, since the “construction”
of a code often works by giving such an encoding procedure.

For the decoding problem, we would ideally like D(E(m) + noise) = m
for every message m, and every “reasonable” noise pattern that the channel
might effect. Now, suppose that the error-correcting code has minimum dis-
tance d (assume d is even) and m1, m2 are two messages such that the Ham-
ming distance between E(m1) and E(m2) is d. Then, assume that E(m1)
is transmitted and the channel effects d/2 errors and distorts E(m1) into a
word r that is right in between E(m1) and E(m2) (see Figure 1.2). In this
case, upon receiving r, the decoder has no way of figuring out which one of
m1 or m2 was the intended message, since r could have been received as a
result of d/2 errors affecting either E(m1) or E(m2).

Therefore, when using a code of minimum distance d, a noise pattern of
d/2 or more errors cannot always be corrected. On the other hand, for any
received word r, there can be only one codeword within a distance of (d−1)/2
from r. This follows using the triangle inequality (since Hamming distance
between strings defines a metric). Consequently, if the received word r has at
most (d−1)/2 errors, then the transmitted codeword is the unique codeword
within distance (d − 1)/2 from r (see Figure 1.3). Hence, by searching for a
codeword within distance (d− 1)/2 of the received word, we can recover the
correct transmitted codeword as long the number of errors in the received
word is at most (d− 1)/2.

d

r

(d−1)/2E(m)

Fig. 1.3. A code of distance d can correct up to (d − 1)/2 errors. For the received
word r, E(m) is the unique codeword within distance (d− 1)/2 from it, so if fewer
than (d − 1)/2 errors occurred, r can be correctly decoded to m.

Due to these facts, a well-posed algorithmic question that has been the
focus of most of the classical algorithmic work on efficient decoding, is the

6 1 Introduction

problem of decoding a code of minimum distance d up to (d − 1)/2 errors.
We call such a decoding unique/unambiguous decoding in the sequel. The
reason for this terminology is that the decoding algorithm decodes only up
to a number of errors for which it is guaranteed to find a unique codeword
within such a distance of the received word.

The obvious unique decoding algorithms which search the vicinity of the
received word for a codeword are inefficient and require exponential runtime.
Nevertheless, a classic body of literature spanning four decades has now given
efficient unique decoding algorithms for several interesting families of codes.
These are among the central and most important results in algorithmic coding
theory, and are discussed in detail in any standard coding theory text (eg.,
[132, 193]).

We are interested in what happens when the number of errors is greater
than (d − 1)/2. In such a case the unique decoding algorithms could either
output the wrong codeword (i.e., a codeword other than the one transmit-
ted), or report a decoding failure and not output any codeword. The former
situation occurs if the error pattern takes the received word within distance
(d−1)/2 of some other codeword. In such a situation, the decoding algorithm,
though its answer is wrong, cannot really be faulted. After all, it found some
codeword much closer to the received word than any other codeword, and
in particular the transmitted codeword, and naturally places its bet on that
codeword. The latter situation occurs if there is no codeword within distance
(d − 1)/2 of the received word, and it brings out the serious shortcoming of
unique decoding, which we discuss below.

It is true that some patterns of d/2 errors, as in Figure 1.2, are uncor-
rectable due to there being multiple codewords at a distance d/2 from the
received word. However, the situation in Figure 1.2 is quite pathological and
it is actually the case that for most received words there will be only a single
codeword that is closest to it. Moreover, the sparsity of the codewords implies
that most words in the ambient space fall outside the region covered by the
(disjoint) spheres of radius (d− 1)/2 around the codewords. Together, these
facts imply that most received words have a unique closest codeword (and
thus it is reasonable to expect that the decoding algorithm correct them to
their closest codeword), and yet unique decoding algorithms simply fail to de-
code them. Indeed, as Shannon’s work [160] already pointed out, for “good”
codes (namely, those that approach capacity), if errors happen randomly ac-
cording to some reasonable probabilistic model, then with high probability
the received word will not be correctable by unique decoding algorithms!

In summary, on a overwhelming majority of error patterns, unique decod-
ing uses the excuse that there is no codeword within a distance (d−1)/2 from
the received word to completely give up on decoding those patterns. This lim-
itation is in turn due to the requirement that the decoding always be unique
or unambiguous, which, as argued earlier, means there are some (pathologi-
cal) patterns of d/2 errors which are not correctable. It turns out that there is

1.3 List Decoding 7

a meaningful relaxation of unique decoding which circumvents this predica-
ment and permits one to decode beyond the perceived “half-the-distance
barrier” faced by unique decoding. This relaxed notion of decoding, called
list decoding, is the subject of this book, and we turn to its definition next.

1.3 List Decoding

1.3.1 Definition

List decoding was introduced independently by Elias [48] and Wozencraft [199]
in the late 50’s. List decoding is a relaxation of unique decoding that al-
lows the decoder to output a list of codewords as answers. The decoding is
considered successful as long as the codeword corresponding to the correct
message is included in the list. Formally, the list decoding problem for a code
E : Σk → Σn is defined as follows: Given a received word r ∈ Σn, find and
output a list of all messages m such that the Hamming distance between r and
E(m) is at most e. Here e is a parameter which is the number of errors that
the list decoding algorithm is supposed to tolerate. The case e = (d − 1)/2
gives the unique decoding situation considered earlier.

List decoding permits one to decode beyond the half-the-distance barrier
faced by unique decoding. Indeed, in the situation of Figure 1.2, the decoder
can simply output both the codewords that are at a distance of d/2 from the
received word. In fact, list decoding remains a feasible notion even when the
channel effects e � d/2 errors.

An important parameter associated with list decoding is the size of the
list that the decoder is allowed to output. Clearly with a list size equal to one,
list decoding just reduces to unique decoding. It is also undesirable to allow
very large list sizes. This is due to at least two reasons. First, there is the
issue of how useful a very large list is, since it is reasonable that the receiver
might finally want to pick one element of the list using additional rounds
of communication or using some tie-breaking criteria. Second, the decoding
complexity is at least as large as the size of the list that the algorithm must
output in the worst-case. Since we want efficient, polynomial time, decoding
procedures, the list size should be at most a polynomial in the message length,
and ideally at most a constant that is independent of the message length.

It turns out that even with a list size that is a small constant (say, 20),
any code of distance d can be list decoded well beyond d/2 errors (for a
wide range of distances d). The bottom line, therefore, is that allowing the
decoder to output a small list of codewords as answers opens up the possibility
of doing much better than unique decoding. In other words, list decoding is
combinatorially feasible.

8 1 Introduction

1.3.2 Is List Decoding a Useful Relaxation of Unique Decoding?

But the above discussion does not answer the obvious question concerning list
decoding that comes to one’s mind when first confronted with its definition:
how useful is the notion of list decoding itself? What does one do with a list
of answers, and when too many errors occur, why is receiving an ambiguous
list of answers better than receiving no answer at all? We now proceed to
answer these questions.

Firstly, notice that list decoding only gives more options than unique
decoding. One can always go over the list output by the algorithm and check
if there is any codeword within distance (d−1)/2 of the received word, thereby
using it to perform unique decoding. But the advantage of list decoding is that
it also enables meaningful decoding of received words that have no codeword
within distance (d−1)/2 from them. As discussed earlier, since the codewords
are far apart from one another and sparsely distributed, most received words
in fact fall in this category. For a large fraction of such received words, one can
show that in fact there is at most one codeword within distance e from them,
for some bound e which is much greater than d/2. Therefore, list decoding
up to e errors will usually (i.e., for most received words) produce lists with at
most one element, thereby obviating the need of dealing with more than one
answer being output! In particular, for a channel that effects errors randomly,
this implies that with high probability, list decoding, when it succeeds, will
output exactly one codeword.

Furthermore, if the received word is such that list decoding outputs several
answers, this is certainly no worse than giving up and reporting a decoding
failure (since we can always choose to return a failure if the list decoding does
not output a unique answer). But, actually, it is much better. Since the list
is guaranteed to be rather small, using an extra round of communication, or
some other context or application specific information, it might actually be
possible to disambiguate between the answers and pick one of them as the
final output. For example, the “ispell” program used to spell-check this book
often outputs a list of correct English words that are close to the misspelled
word. The author of the document can then conveniently pick one of the
words based on what he/she actually intended. As another example, consider
the situation where a spacecraft transmits the encoding of, say a picture
of Saturn, back to the Earth. It is possible that due to some unpredictable
interference in space, the transmission gets severely distorted and the noise
is beyond the range unique decoding algorithms can handle. In such a case,
it might be unreasonable to request a retransmission from the spacecraft.
However, if a list decoding algorithm could recover a small list of candidate
messages from the received data, then odds are that only one member of the
list will look anything like a picture of Saturn, and we will therefore be able
to recover the original transmitted image.

Also, we would like to point out that one can always pick from the list the
codeword closest to the received word, if there is a unique such codeword, and

1.3 List Decoding 9

output it. This gives the codeword that has the highest likelihood of being the
one that was actually transmitted, even beyond the half-the-distance barrier.
Finding such a codeword is referred to as maximum likelihood decoding in the
literature. See the “interlude” at the end of this section for further discussion
about this point, but in a nutshell, list decoding permits one to perform
maximum likelihood decoding as long as the number of errors effected by the
channel is bounded by the maximum number of errors that the list decoding
algorithm is designed to tolerate.

Finally, error-correcting codes and decoding algorithms play an important
role in several contexts outside communication, and in fact they have become
fundamental primitives in theoretical computer science. In many cases list
decoding enhances the power of this connection between coding theory and
computer science.

Interlude: Maximum likelihood decoding (MLD) is an alternate notion of
decoding considered in the literature. The goal of MLD is to output the
codeword closest in Hamming distance to the received word (ties broken
arbitrarily). This is considered by many to be the “holy grail” of decoding,
since it outputs the codeword with the highest likelihood of being the one that
was actually transmitted. MLD clearly generalizes unique decoding, since if
there is a codeword within distance (d− 1)/2 of the received, it must be the
unique closest codeword. List decoding and MLD are, however, incomparable
in power. List decoding can be used to perform MLD as long as the number
of errors is bounded by the amount that the list decoding algorithm was
designed to tolerate. In such a case, list decoding is in fact a more general
primitive since it gives all close-by codewords, including the closest one(s),
while a MLD algorithm rigidly makes up its mind on one codeword. On the
other hand, MLD does not assume any bound on the number of errors, while
list decoding, owing to the requirement of small list size in the worst-case,
does. The main problem with MLD is that it ends up being computationally
intractable in general, and extremely difficult to solve even for particular
families of codes. In fact, the author is unaware of any non-trivial code family
for which maximum likelihood decoding is solvable in polynomial time. In
contrast, list decoding, as our work demonstrates, is algorithmically tractable
for several interesting families of codes. End Interlude

1.3.3 The Challenge of List Decoding

The real problem with list decoding was not that it was not considered to be
useful, but that there were no known algorithms to efficiently list decode well
beyond half-the-distance for any useful family of error-correcting codes (even
though it was known that, combinatorially, list decoding offered the potential
of decoding many more than d/2 errors using small lists). The naive brute-
force search algorithms all take exponential time, and we next give some idea
of why efficient list decoding algorithms have remained so elusive, despite
substantial progress on efficient unique decoding.

10 1 Introduction

Classical unique decoding algorithms decode only up to half-the-distance.
In particular, they can never decode when more than half the symbols are in
error. List decoding, on the other hand, aims to handle errors well beyond
half-the-distance, and consequently, must even deal with situations where
more than half the symbols are in error, including cases where the noise is
overwhelming and far out-weighs the correct information. In fact, list decod-
ing opens the potential of decoding when the noise is close to 100%. Realiz-
ing the potential of list decoding in the presence of such extreme amounts of
noise poses significant algorithmic challenges under which the ideas used in
the classical decoding procedures break down.

1.3.4 Early Work on List Decoding

The early work on list decoding focused only on statistical or combinatorial
aspects of list decoding. We briefly discuss these works below. The initial
works by Elias [48] and Wozencraft [199], which defined the notion of list
decoding, proved tight bounds on the error probability achievable through
list decoding on certain probabilistic channels. Results of a similar flavor also
appear in [162, 61, 2]. Elias [49] also generalized the zero error capacity of
Shannon [161] to list decoding and obtained bounds on the zero error capacity
of channels under list decoding with lists of certain size.

The focus in the 80’s shifted to questions of a more combinatorial nature,
and considered the worst-case list decoding behavior of codes. The central
works in this vein are [203, 27, 50]. These established bounds on the number
of errors that could be corrected by list decoding using lists of a certain fixed
size, for error-correcting codes of a certain rate. This is in the spirit of the
questions that we investigate. However, none of these results presented any
non-trivial list decoding algorithms.2 Thus, despite being an extremely useful
generalization of unique decoding, the potential of list decoding was largely
untapped due to the lack of good algorithms.

1.4 Contributions of This Work

Our work presents a systematic and comprehensive investigation of list de-
coding, with a focus on algorithmic results. Presenting our contributions in
sufficient detail would require several more definitions. Therefore, we only
give a high level description of the contributions here, deferring a detailed
discussion of the contributions of the individual chapters and how they fit
together to the next chapter. Figure 1.4 gives a bird’s eye view of the kind
of results discussed in this monograph. The following description is probably
best read with Figure 1.4 in mind.

2Here triviality is used to rule out both brute-force search algorithms and unique
decoding algorithms.

1.4 Contributions of This Work 11

(Chapters 3, 4, 5)
Reed−Solomon Decoding

(Chapter 6)

 AlgorithmsComplexity Crypto

Applications

Theory

(Chapter 12)

Concatenation

Good List Decodable

(Chapters 8, 10)
Binary codes

Expanders

Expander−based
List decodable codes

(Chapter 9)

(Chapter 11)
decodable codes
Linear time unique

AG−codes

Generalization +
Unified Paradigm

"Ideal"−based codes
(Chapters 6, 7)

Combinatorial Results

Fig. 1.4. A high level view of various chapters in this book

The first part of this monograph investigates certain combinatorial aspects
of list decoding. We study the trade-offs between the list decodability of a
code and the more classical parameters like rate and minimum distance. The
results yield a significant sharpening of our understanding of the potential and
limits of list decoding. Our combinatorial results are important in their own
right and also because they set the stage for, and are repeatedly appealed to
or used in, several subsequent results. The crux of this work is its algorithmic
results, which comprise the second part of the thesis.

The highlight here is a list decoding algorithm for Reed-Solomon codes
(Chapter 6). Reed-Solomon codes are among the most important and widely
studied families of codes, and several classical unique decoding algorithms are
known for them (cf. [132, Chapters 9,10]). However, despite over four decades
of research, there was no known algorithm to efficiently list decode Reed-
Solomon codes well beyond d/2 errors where d is the minimum distance. In
Chapter 6, we present the first polynomial time list decoding algorithm that
corrects more than d/2 errors for every value of the rate. This result builds
upon an earlier breakthrough result of Sudan [178] who gave such an algo-
rithm for Reed-Solomon codes of rate less than 1/3. Our result list decodes up
to what might well be the true list decoding potential of Reed-Solomon codes.
We also generalize the algorithm to algebraic-geometric codes. The novelty
of our technique enables us to also get a more general soft list decoding al-
gorithm , which can take advantage of reliability information on the various
symbols. This is the first non-trivial soft decoding algorithm with a provable

12 1 Introduction

performance guarantee for Reed-Solomon codes since the classic 1966 work
of Forney [60] on Generalized Minimum Distance (GMD) decoding.

Using our decoding algorithms for Reed-Solomon codes at the core, we
also obtain several other non-trivial list decoding algorithms. These include
novel algorithms for list decoding of several concatenated codes.3 As a re-
sult we obtain constructions of binary codes which are efficiently list decod-
able from extremely large amounts of noise, and which have rate reasonably
close to the best possible for such codes. (Prior to our work, there was no
known construction of such codes with a positive rate, no matter how low
the rate.) We also introduce novel code constructions by combining algebraic
list decodable codes with “highly expanding” graphs, and thereby get new
list decodable codes which improve these bounds further.

Using an expander-based construction in the same spirit as our construc-
tion for list decoding, we also get a significant improvement over a prior result
for unique decoding. (This shows that techniques developed for list decod-
ing also yield new insights towards solving classically studied questions like
unique decoding.) Specifically, we prove that for every ε > 0 and 0 < r < 1,
there are linear time encodable and decodable codes of rate r which can be
uniquely decoded up to a fraction (1 − r − ε)/2 of errors. By the Singleton
bound, this fraction of errors is the best possible for unique decoding, and
we are able to achieve this optimal trade-off together with linear time al-
gorithms. By concatenation, this also gives linear-time encodable/decodable
binary codes that (almost) match the rate of the best known polynomial time
decodable constructions. In contrast, the linear time encodable/decodable bi-
nary codes known prior to this work, due to Spielman [176], could correct
only a tiny fraction of errors (of the order of 10−6).

List decoding, while primarily a coding-theoretic notion, has also found
applications to other areas of theoretical computer science like complexity
theory, cryptography, and algorithms. For these applications unique decoding
does not suffice, and moreover, for several of them one needs efficient list
decoding algorithms. In Chapter 12, we survey some of these “extraneous”
applications of list decoding.

Despite its conception more than four decades ago, the long hiatus before
efficient algorithms were found means that list decoding is still a subject in its
infancy. This book represents the first comprehensive survey of the subject of
list decoding. Inspite of its length, we have attempted a cohesive presentation
that hopefully succeeds in highlighting the various aspects of list decoding
and how they all fit together nicely. There is lot more work to be done on the
subject, and it is our hope that this monograph will inspire at least some of
it.

3Concatenated codes are obtained by combining two codes. The message is first
encoded according to the first code, and then each symbol of the resulting codeword
is encoded using the second code. A more detailed description will appear in the
next chapter, specifically in Section 2.3.

1.6 Comparison with Doctoral Thesis Submitted to MIT 13

1.5 Background Assumed of the Reader

This work faces the situation of having at least two audiences: computer
scientists and coding theorists. Hopefully the style of our presentation will
be accessible to people with either background. However, the author being
a computer scientist by training, the book is probably more in line with the
language and style of presentation that computer scientists are used to. The
only real background required to read this book are basic algebra (comfort
with finite fields and the like), some amount of probability and combinatorics,
etc. Also, the focus of the bulk of the book is quite algorithmic, and hence
comfort with the analysis of asymptotic complexity of algorithms would be
a big plus.

Some portions of the monograph, by the very nature of the topic they
discuss, are necessarily somewhat heavy on rather technical and/or algebraic
matter. These include: Chapter 4 on the combinatorial limitations of list
decoding, the portion of Chapter 6 that deals with algebraic-geometric codes,
and Chapter 7 on the decoding of ideal-based codes. In all these cases, we
have attempted to clearly state the necessary facts/theorems that we borrow
from algebra. Assuming these facts the rest of the presentation should be
generally accessible.

1.6 Comparison with Doctoral Thesis Submitted to MIT

Except for stylistic changes, our presentation for the large part closely follows
the version of the author’s doctoral dissertation that was submitted to MIT
in August 2001.

The subject of list decoding has seen some significant new developments
since 2001; however, we have resisted including details of these recent works
beyond giving a pointer to them where appropriate (and in some cases, de-
scribing the gist of the improvement). A notable exception to this is in Chap-
ter 11 on expander-based unique decodable codes. The results of Sections
11.4 and 11.5 were obtained in work done after the submission of the thesis
[82], that improved the bounds discussed in the original version of the thesis
(based on an earlier paper [81]). We chose to present the results from [82]
because they not only get the “right” trade-offs, but do so with elegant tech-
niques that are not much more difficult compared to the approach of [81]. We
also removed some portions of Chapter 11 on near-linear time list-decodable
codes that appeared in the thesis version, since these have since become ob-
solete in light of the near-linear time implementations of the Reed-Solomon
list decoding algorithm [4].

Below we mention some other portions where significant revisions were
done. Section 4.5 in Chapter 4 was newly added, and the contents of Sec-
tion 4.6 were revised to highlight the explicit constructions used to prove the

14 1 Introduction

bound in Theorem 4.9. We also added a brief section (Section 4.7.3) on an
unconditional proof of tightness of Johnson bound based on the work [87].

Several portions of Chapter 10 were significantly revised based on the
journal paper [78], and implicit results on erasure list decoding from the lit-
erature that were stated in the language of “Generalized Hamming Weights”,
are now explicitly referenced and used.

2 Preliminaries and Monograph Structure

In Galois Fields, full of flowers
primitive elements dance for hours
climbing sequentially through the trees
and shouting occasional parities.

- S.B. Weinstein (IEEE Transactions on Information Theory,
March 1971)

In this chapter, we review the basic definitions relating to error-correcting
codes and standardize some notation. We then give a brief description of the
fundamental code families and constructions that will be dealt with and used
in this book. Finally, we discuss the structure of this work and the main
results which are established in the technical chapters that follow, explaining
in greater detail how the results of the various chapters fit together.

2.1 Preliminaries and Definitions

In order to avoid introducing too much formalism and notation this early
on, we only discuss the most fundamental definitions and will defer a formal
treatment of further definitions until they are needed.

2.1.1 Basic Definitions for Codes

Code, Blocklength, Alphabet size:

Let q ≥ 2 be an integer, and let [q] = {1, 2, . . . , q}.
– An error-correcting code (or simply, code) C is a subset of [q]n for some

positive integers q, n. The elements of C are called the codewords in C.
– The number q is referred to as the alphabet size of the code, or alternatively

we say that C is a q-ary code. When q = 2, we say that C is a binary code.
– The integer n is referred to as the blocklength of the code C.

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 15-30, 2004.
© Springer-Verlag Berlin Heidelberg 2004

16 2 Preliminaries and Monograph Structure

Dimension and Rate:

– The dimension of a q-ary code C of size M = |C|, is defined to be logq M .
(The reason for the term “dimension” will be clear once we discuss linear
codes shortly.)

– The rate of a q-ary code C of size M , denoted R(C), is defined to be the
normalized quantity logq M

n .

It is often convenient to view a code C ⊆ [q]n of size M as a function C :
[M] → [q]n. Under this view the elements of [M] are called messages, and
for a message x ∈ [M], its associated codeword is the element C(x) ∈ [q]n.
Often we will take M to be a perfect power of q, say M = qk, where k
is the dimension of the code (this will always be the case, for example, for
linear codes which will be discussed shortly). In such a case it is convenient
to identify the message space [M] with [q]k, and view messages as strings of
length k over [q]. Viewed this way, a q-ary error-correcting code provides a
systematic way to add redundancy to a string of length k over [q] and encode
it into a longer string of n symbols over [q].

(Minimum) Distance and Relative Distance: For strings x,y ∈ [q]n

where x = 〈x1, x2, . . . , xn〉 and y = 〈y1, y2, . . . , yn〉, the Hamming distance
between them, denoted Δ(x,y), is defined to be the number of coordinates
where they differ, that is, the number of i’s, 1 ≤ i ≤ n, for which xi
= yi.

– The minimum distance (or simply distance) of a code C, denoted dist(C),
is the minimum Hamming distance between two distinct codewords of C.
Formally,

dist(C) = min
c1,c2∈C

c1 �=c2

Δ(c1, c2) .

– The relative distance of a code C, denoted δ(C), is defined to be the nor-
malized quantity dist(C)

n , where n is the blocklength of C.

Notation: We refer to a general q-ary code of blocklength n, dimension k, and
minimum distance d, as an (n, k, d)q-code. Note that for general, non-linear
codes, the dimension is simply the logarithm to the base q of the number
of codewords, and therefore need not be an integer. We will often omit the
distance parameter and refer to a q-ary code of blocklength n and dimension
k as an (n, k)q code. When the alphabet size is clear from the context we will
omit the subscript q.1

1This might appear non-standard to readers already familiar with coding theory
who are probably used to the notation [n, k, d]q-code. But this is normally used
only for linear codes, and we use (n, k, d)q-code to refer to a general, non-linear
code with these parameters. For linear codes, which we define next, we will stick
to the standard notation. Also, in some texts, non-linear codes with M codewords
are referred to as (n, M, d)q-codes.

2.1 Preliminaries and Definitions 17

2.1.2 Code Families

Since the main thrust of this paper is the asymptotic performance of the
codes, we define analogs of the quantities above for infinite families of codes.
An infinite family of q-ary codes is a family C = {Ci|i ∈ Z} where Ci is an
(ni, ki)q code with ni > ni−1. We define the rate of an infinite family of codes
C to be

R(C) = lim inf
i

{
ki

ni

}
.

We define the (relative) distance of an infinite family of codes C to be

δ(C) = lim inf
i

{
dist(Ci)

ni

}
.

Asymptotically Good Code Families

Definition 2.1. A family C of codes is said to be asymptotically good if both
its rate and relative distance are positive, i.e., if R(C) > 0 and δ(C) > 0.

By abuse of notation, we will use the phrase “asymptotically good codes”
when referring to codes which belong to an asymptotically good code fam-
ily. The study of the trade-off between the rate and relative distance for
asymptotically good codes is one of the main objectives of (asymptotic) com-
binatorial coding theory.

2.1.3 Linear Codes

Let q be a prime power. Throughout, we denote a finite field with q elements
by Fq or GF(q) interchangeably. We assume when necessary that the field Fq

can be identified with [q] in some canonical way.

– A linear code C of blocklength n is a linear subspace (over some field Fq)
of Fn

q .

Clearly, a linear code over Fq has qk elements, where k is the dimension
of the code as a vector space over Fq. The dimension of a q-ary linear code
C is thus the same as its dimension when considered as a vector space over
Fq (hence the terminology “dimension” for the quantity logq |C|).

As is standard notation, we refer to a q-ary linear code of blocklength n,
dimension k and distance d, as an [n, k, d]q code. We will omit the distance
parameter when we do not need to refer to it, and omit the subscript when
the alphabet size is clear from the context.

For linear codes, the all-zeroes string is always a codeword. Hence the
distance of a linear code equals the minimum Hamming weight of a non-zero
codeword, where the Hamming weight of a string is defined as the number of
coordinates in which it has a non-zero symbol.

An [n, k]q linear code can be specified in one of two equivalent ways: using
the generator matrix or the parity check matrix.

18 2 Preliminaries and Monograph Structure

– An [n, k]q linear code C can always be described as the set {Gx : x ∈ Fk
q}

for an n× k matrix G; such a G is called a generator matrix of C.
– An [n, k]q linear code C can also be specified as the subspace {y : y ∈

Fn
q and Hy = 0} for an (n− k)×n matrix H ; such an H is called a parity

check matrix of C.

The above representations of a linear code immediately imply the following
for any [n, k]q linear code:

- (Representation:) It can be succinctly represented using O(n2) space (by
storing either the generator or parity check matrices).

- (Encoding:) A message x ∈ Fk
q can be encoded into its corresponding

codeword using O(nk) field operations (by multiplying it with the generator
matrix of the code).

The weight distribution of a linear code C of blocklength n is defined to
be the vector (A0, A1, . . . , An), where Ai is the number of codewords of C of
Hamming weight i, for 0 ≤ i ≤ n. Note that A0 = 1, and if d is the distance
of C, then A1, A2, . . . , Ad−1 = 0.

Given a linear code C ⊆ Fn
q , one can define a relation, say ∼, between

elements of Fn
q as follows: y ∼ z iff y − z ∈ C. Since the code is linear,

it is easy to check that this defines an equivalence relation. Consequently, it
defines a partition of the space Fn

q into equivalence classes. These equivalence
classes are called the cosets of the code C.2 One of these cosets will be the
code C itself. The weight distribution of cosets of a linear code in fact provide
detailed information about the combinatorial list decodability properties of a
code. For sake of simplicity though, we state and prove all our combinatorial
results using only the language of list decoding (which we shortly develop in
Section 2.1.4).

Additive Codes: A class of codes that lie in between linear and general non-
linear codes in terms of “structure” are additive codes. These are codes over
Fq which are closed under codeword addition; i.e., if x and y are codewords
then so is x + y. (For linear codes, we will have the additional property that
if x is a codeword then so is αx for every α ∈ Fq — here αx stands for the
string obtained by coordinate-wise multiplication of x by α.) Note that for
binary codes, additive codes define the same class as linear codes.

2.1.4 Definitions Relating to List Decoding

Recall that under list decoding, the aim, given a received word, is to output a
list of all codewords that lie within a Hamming ball of certain radius around
the received word. The radius of the ball corresponds to the number of errors

2This terminology is borrowed from group theory, and the cosets of C defined
above are precisely the group-theoretic cosets of C when it is viewed as an additive
subgroup of Fn

q .

2.1 Preliminaries and Definitions 19

corrected by the list decoding procedure. Hence it is of interest to quantify
the maximum number of codewords in a ball of certain radius, or equivalently,
to quantify the largest number of errors that can be list decoded with lists
of a certain size. We do this by defining the “list decoding radius” of a code
below.

Let q ≥ 2 be the alphabet size of a code C of blocklength n. For a non-
negative integer r and x ∈ [q]n, let Bq(x, r) denote the Hamming ball of
radius r around x, i.e.,

Bq(x, r) = {y ∈ Fn
q | Δ(x,y) ≤ r} .

For the case q = 2, we will usually omit the subscript and refer to such a ball
as simply B(x, r).

Definition 2.2 ((e, L)-list decodability). For positive integers e, L, a code
C ⊆ Fn

q is said to be (e, L)-list decodable if every Hamming ball of radius e
has at most L codewords, i.e. ∀ x ∈ Fn

q , |Bq(x, e) ∩ C| ≤ L.

Definition 2.3 (List Decoding Radius). For a code C of blocklength n
and an integer L ≥ 1, the list of L decoding radius of C, denoted radius(C, L)
is defined to be the maximum value of e for which C is (e, L)-list decodable.
We also define the normalized list-of-L decoding radius, denoted LDRL(C),
as

LDRL(C) =
radius(C, L)

n
.

As before we would like to extend this definition for families of codes, since
our aim is to study the asymptotic performance of codes. To do this, it makes
sense to allow the list size to be a function of the blocklength. Accordingly
we have the following definition.

Definition 2.4. [List Decoding Radius for code families] For an infinite
family of codes C = {Ci}i≥1 where Ci has blocklength ni, and a function
� : Z+ → Z+, define the list of � decoding radius of C, denoted LDR�(C), to
be

LDR�(C) = lim inf
i

{
radius(Ci, �(ni))

ni

}
.

When � is the constant function that takes on the value L on every input
blocklength, we denote LDR�(C) as simply LDRL(C).

Remark: It will be clear from the context whether the LDR function is
being applied to a code or to a code family, and also whether it is applied
to a constant list size or to a list size which is a growing function of the
blocklength.

20 2 Preliminaries and Monograph Structure

Some “informal” usages:

Sometimes we also refer to the phrase “list decoding radius” without
an explicit mention of the list size. In such cases we imply the list decoding
radius for a list size which is some polynomially growing function of the
blocklength, i.e., for �(n) = nc for some constant c (in fact, in almost every
such reference in this book setting c = 2 will suffice).

We will also use the adjectives “list decodable up to a fraction α of errors”
or “list decodable up to (relative) radius α” to refer to codes or code families
whose list decoding radius is at least α. We will say a list decoding algorithm
can “correct” a fraction α of errors (or e errors), if it can perform list decoding
up to a fraction α of errors (or up to a radius of e).

2.1.5 Commonly Used Notation

Much of the notation we use is standard. Throughout the book both logx
and lg x will denote the logarithm of x to the base 2. We denote the natural
logarithm of x by lnx. For bases other than 2 and e, we explicitly include
the base in the notation; for example logarithm of x to the base q will be
denoted by logq x.

For a real number x, �x� will denote the largest integer which is at most
x, and �x� will denote the smallest integer which is at least x.

For x in the range 0 ≤ x ≤ 1, and an integer q ≥ 2, we denote by Hq(x) the
q-ary entropy function, i.e., Hq(x) = x logq(q−1)−x logq x−(1−x) logq(1−x).
When q = 2, we denote the binary entropy function H2(x) as simply H(x).

For a finite set S, we denote the number of elements that belong to S
by |S|.

2.2 Basic Code Families

In this section, we describe the central code families which will be studied in
this book. Several of these will also be used as building blocks for the new
code constructions that we present.

2.2.1 Reed-Solomon Codes

Reed-Solomon codes are an extremely important and well-studied family of
linear codes. They are based on the properties of univariate polynomials over
finite fields. Formally, an [n, k + 1]q Reed-Solomon code, with k < n and
q ≥ n, is defined as follows. Let α1, α2, . . . , αn be n distinct field elements in
Fq (since q ≥ n, it is possible to pick such αi’s). The message space consists
of polynomials p ∈ Fq[x] with degree at most k, and a “message” p is encoded
as:

p �→ 〈p(α1), p(α2), . . . , p(αn)〉 .

2.2 Basic Code Families 21

Note the message space can be identified with Fk+1
q in the obvious way:

view 〈m0, m1, . . . , mk〉 as the polynomial m0 + m1x + . . . + mkxk.
The following basic proposition follows from the well-known fact from

algebra that two degree k polynomials over a field can agree on at most k
places.

Proposition 2.5. The above code is an [n, k + 1, d = n− k]q code.

The Singleton bound in coding theory says that the sum of the distance
and dimension of a code can be at most n + 1, where n is the blocklength
of the code (cf. [193, Section 5.2]). Hence, Reed-Solomon codes “match” the
singleton bound. Such codes are called Maximum Distance Separable (MDS),
since they have the maximum possible distance for a given blocklength and
dimension. The MDS property together with the nice algebraic structure
of Reed-Solomon codes that facilitates the design of efficient decoding al-
gorithms, have made it one of the most fundamental code families. Reed-
Solomon codes have found a wide variety of applications in coding theory
and computer science, as well as several applications in the “real world” –
examples include compact disc players, disk drives, satellite communications,
and high-speed modems such as ADSL, to name a few (see [198] for detailed
information on the various applications of Reed-Solomon codes).

2.2.2 Reed-Muller Codes

Reed-Muller codes are a generalization of Reed-Solomon codes obtained by
taking for message space all �-variate polynomials over some finite field Fq

with total degree at most m, subject to the condition that no variable takes
on a degree of q or more. A polynomial is again encoded by evaluating it at
n distinct elements of F�

q, where n is the blocklength of the code (note that
this requires n ≤ q�). Setting � = 1 we get the construction of Reed-Solomon
codes. The degree parameter m is often referred to as the order of the Reed-
Muller code. Reed-Muller codes are clearly linear codes. When m < q, their
dimension equals

(
m+�

m

)
, and using what is now famous as the Schwartz-Zippel

Lemma, it follows that their relative distance is at least (1 −m/q).3

Hadamard Codes Of special interest are Reed-Muller codes of order 1, i.e.,
codes based on multilinear polynomials, also known as simplex codes (a de-
tailed discussion of these codes appears in [132, Chap. 14]). A variant of these,
based on homogeneous polynomials with no constant term, are commonly re-
ferred to as Hadamard codes. Formally, a Hadamard code of dimension � over
Fq is defined as follows. A message x ∈ F�

q is mapped to the string 〈x · z〉z∈F�
q

of length q� (here by x · z we mean the dot product of the vectors x and z
over the field Fq). The Hadamard code thus has very poor rate since it maps

3When m ≥ q, in general there is no simple closed form for the dimension, and
the relative distance is at least q−�m/q�.

22 2 Preliminaries and Monograph Structure

� symbols over Fq into q� symbols. But it has very good distance properties
— its relative distance equals (1−1/q), and in fact every non-zero codeword
has Hamming weight equal to (q� − q�−1). Despite its poor rate, its highly
structured distance properties makes it an attractive code for use at the inner
level in certain concatenation schemes. Indeed, several of our concatenated
code constructions in later chapters use a suitable Hadamard code as an inner
code.

2.2.3 Algebraic-Geometric Codes

Algebraic-geometric codes (or AG-codes, for short) are also a generalization
of Reed-Solomon codes. Reed-Solomon codes may be viewed as evaluations
of certain functions at a subset S of points on the projective line over Fq —
the functions are those that have a bounded number of “poles” at a certain
point that is designated as the “point at infinity” and no poles elsewhere
(this corresponds precisely to low-degree polynomials), and the code can be
defined based on any subset S of points that does not include the point at
infinity. AG-codes are a generalization based on any “nice” algebraic curve
playing the role of the projective line. Let Γ be such a curve. Every such
curve has an associated function field which, roughly, is the set of all “valid”
functions that can be evaluated at points on Γ . To construct an AG-code
based on Γ , one picks a point P∞ on the curve and a set S of points on Γ
disjoint from {P∞}. The message space of the code will be all functions in
the function field of Γ that have a bounded number of poles at P∞ and no
poles elsewhere, and such a function will be encoded by evaluating it at each
of the points in S. The precise definition of AG-codes requires a reasonable
amount of background in the theory of algebraic function fields and curves,
and this will be developed in Chapter 6 where we will give a list decoding
algorithm for AG-codes.

2.2.4 Concatenated Codes

Concatenated coding gives a way to combine two codes, an outer code Cout

over a large alphabet (say [Q]), and an inner code Cin with Q codewords over
a small(er) alphabet (say, [q]), to get a combined q-ary code that, loosely
speaking, inherits the good features of both the outer and inner codes. These
were introduced by Forney [59] in a classic and seminal work. The basic idea
is very natural (see the illustration in Figure 2.1): to encode a message using
the concatenated code, we first encode it using Cout, and then in turn encode
each of the resulting symbols (which all belong to [Q]) into the corresponding
codeword of Cin. Since there are exactly Q codewords in Cin, the encoding
procedure is well defined.

The rate of the concatenated code is the product of the rates of the outer
and inner codes, and the distance is at least as large as the product of the

2.2 Basic Code Families 23

n symbols over F

Outer encoding
Cout

a 2 a n1a

inin

Message

Inner Encodings

C (a)

Cin

C (a)2 nC (a)in 1

Fig. 2.1. Code concatenation. If the outer code Cout is over an alphabet F , and
the inner code Cin has exactly |F | codewords corresponding to the |F | symbols of
F , there is a natural way to combine them by “concatenation”.

distances of the outer and inner codes. The product of the distances of the
outer and inner codes is called the designed distance of the concatenated code.
Thus, concatenated codes have good rate and distance if the outer and inner
codes have good rate and distance.

The big advantage of concatenated codes for us is that we can get a good
list decodable code over a small alphabet (say, binary codes) based on a good
list decodable outer code (like a Reed-Solomon or AG-code) and a “suitable”
binary inner code. The dimension of the inner code is small enough to permit
a brute-force search for a “good” code in reasonable time. Code concatenation
forms the basis of all our code constructions in Chapters 8, 9 and 10, and is
a heavily used tool in this book.

2.2.5 Number-Theoretic Codes

The book also discusses number-theoretic codes which are based on a similar
algebraic principle to the one underlying the construction of Reed-Solomon
and AG-codes.

Chinese Remainder Codes Chinese Remainder codes (or CRT codes,
for short), also called Redundant Residue codes, are the number-theoretic
analog of Reed-Solomon codes. The messages of the CRT code are integers
in {0, 1, . . . , K− 1} for some K, and a message m, 0 ≤ m < K, is encoded as

m �→ 〈m mod p1, m mod p2, . . . , m mod pn〉

24 2 Preliminaries and Monograph Structure

for n relatively prime integers p1 < p2 < · · · < pn. If k is such that
∏k

i=1 pi >
K, then by the Chinese Remainder theorem (hence the name of the code),
the residues of m modulo any k of the pi’s uniquely specifies m. Hence any
two codewords (corresponding to encodings of m1, m2 with m1
= m2) differ
in at least (n − k + 1) positions. Thus, the distance of the code is at least
(n− k + 1).

Number Field Codes Number field codes are the number-theoretic analogs
of AG-codes, and generalize CRT codes akin to the way AG-codes generalize
Reed-Solomon codes. The code is based on a suitable “number field” (i.e., a
finite extension of the field Q of rational numbers) and the associated “ring
of integers” R. A formal description of these codes will take us too far afield
from the main thrust of this book. Hence we do not discuss these codes here;
the interested reader is pointed to [127, 77] for formal definitions of these
codes and details on their properties.

2.3 Detailed Description of Book Chapters

This book presents a comprehensive investigation of the notion of list decod-
ing. It deals both with fundamental combinatorial questions relating to list
decoding and the algorithmic aspects of list decoding. It also discusses a few
applications of list decoding both within coding theory (to questions not di-
rectly concerned with list decoding) and to certain complexity-theoretic and
algorithmic questions outside coding theory.

Though the questions addressed are all intimately related, for purposes of
exposition and because they permit such modularity, we structure the results
in this book into three parts: Combinatorial Results (Part I), Algorithms and
Code Constructions (Part II), and Applications (Part III).

The combinatorial results of Part I set the stage for the algorithmic re-
sults by highlighting what one can and cannot hope to do with list decod-
ing. The algorithmic results attempt to “match” the combinatorial bounds
with explicit code constructions and efficient decoding algorithms. These in-
clude algorithms for classical and well-studied codes like Reed-Solomon and
algebraic-geometric codes, as well as for certain novel code constructions. In
Part III, we discuss some applications of the results and techniques from
earlier chapters to domains both within and outside of coding theory. The
notion of list decoding turns out to be central to certain contexts outside of
coding theory, for example to several complexity-theoretic questions. These
and several other applications are discussed in Part III of the book.

We now discuss the results of each of these parts in further detail.

2.3.1 Combinatorial Results

Chapter 3 — The Johnson Bound on List Decoding Radius. We
argued in the introduction that unique/unambiguous decoding is not possible

2.3 Detailed Description of Book Chapters 25

when the number of errors exceeds half the minimum distance (say, d/2) of
the code. The purpose of list decoding is to allow for meaningful recovery
when the number of errors exceeds this bound. But for list decoding to be
meaningful, and definitely for it to be algorithmically feasible, one needs the
guarantee that one can correct many more than d/2 errors with fairly small
lists (say, of size a fixed constant, or a fixed polynomial in the blocklength). In
this chapter, we revisit a classical bound from coding theory called “Johnson
bound”, present extensions of it, and apply it to the context of list decoding.
The bound demonstrates that one can always correct more than d/2 errors
with “small” lists – the exact number of errors to which the bound applies is
an explicit function of the distance of the code, and we call this the Johnson
bound on list decoding radius. One way to view these results is that one
can construct good list decodable codes by constructing codes with large
minimum distance. There are several proofs known for Johnson-type bounds
in the literature – the proof presented in this chapter appears in [91].

Chapter 4 — Limits to List Decodability. We address the natural ques-
tion raised by the results of Chapter 3 – namely whether the Johnson bound
is “tight”, that is, whether the Johnson bound is the best possible bound on
the list decoding radius (purely as a function of the distance of the code). For
general, non-linear codes, it is easy to show that the Johnson bound is indeed
tight as a general trade-off between list decoding radius and distance. The
more interesting case of linear codes, however, turns out to be significantly
harder to resolve, and is the subject of this chapter. We present construc-
tions of linear codes of good distance with several codewords in a “small”
Hamming ball. Under a widely believed number-theoretic conjecture (which
in particular is implied by a suitably generalized Riemann Hypothesis), we
prove that the Johnson bound is indeed a “tight” bound on the list decoding
radius (for decoding with polynomial sized lists). We prove such a result un-
conditionally for list decoding with constant-sized lists. We also prove that
the list decoding radius for polynomial-sized list is bounded away from the
minimum distance of the code.

Chapter 5 — List decodability Vs. Rate. The results of the earlier
chapters show that one way to get codes with large list decoding radius
is to use codes with large minimum distance. But if our main concern is
list-of-L decoding (for some list size L), then is this “two-step” route the
best way to get good list decodable codes? The answer turns out to be no,
and in this chapter we show that one can achieve a much better rate by
directly optimizing the list-of-L decoding radius, than by going through the
minimum distance (and using the Johnson bound on list decoding radius).
Our results employ the probabilistic method, and are thus non-constructive.
Nevertheless, these results set the stage for the algorithmic results of Part
II, by highlighting the kind of parameters one can hope for in efficiently list
decodable codes. Moreover, for small enough blocklengths, these “good” codes
can be found by brute-force search, and this is exploited in our concatenated

26 2 Preliminaries and Monograph Structure

code constructions. The results in this chapter are a combination of results
from [203, 80, 81].

Part I: Summary. The combinatorial results provide a fairly precise un-
derstanding of the general trade-off between the list decoding radius of a
code, and the more traditional parameters like rate and minimum distance
of a code. The Johnson bound asserts that codes with large minimum dis-
tance have large list decoding radius, which raises algorithmic questions on
list decoding such codes from a large number of errors. This is not the only
approach to get good list decodable codes, however, as directly optimizing
the list decoding radius can lead to better trade-offs as a function of the rate
of the code.

2.3.2 Algorithmic Results

Even though the notion of list decoding originated more than 40 years
ago [48, 199], and some of its combinatorial and information-theoretic as-
pects (relating to channel capacity under list decoding) received attention,
until recently no efficient list decoding algorithms were known for any (non-
trivial) family of codes that could correct asymptotically more errors than the
traditional half the distance bound. Part II of the book presents polynomial
time list decoding algorithms for several classical families of codes as well
as several new constructions of codes that have very efficient list decoding
algorithms. Details of the specific chapters and the results therein follow.

Chapter 6 — Reed-Solomon and Algebraic-geometric Codes. We
present an efficient algorithm to list decode the important class of Reed-
Solomon codes up to the Johnson bound on list decoding radius. Among
other things this is the first algorithm to decode Reed-Solomon codes beyond
half the distance for every value of the rate. This algorithm was obtained in
joint work with Madhu Sudan [88], and it builds upon the earlier works by
Sudan [178] and Ar et al [11]. We also present a “weighted” version of the
decoding algorithm which can take “soft” inputs – this is a very useful subrou-
tine in soft-decision decoding of Reed-Solomon codes [121] and in decoding
various concatenated codes. We also present a generalization of the algorithm
to list decode algebraic-geometric codes, following some ideas from the earlier
work of [165]. The family of algebraic-geometric codes are more general than
Reed-Solomon codes, and for large enough alphabets contain codes with the
best known asymptotic trade-off between the rate and relative distance.

Chapter 7 — Unified Paradigm for List Decoding. We present a uni-
fied description of several known algebraic codes including Reed-Solomon,
algebraic-geometric and Chinese Remainder (CRT) codes in the language of
rings and ideals. We also present a unified list decoding algorithm for ideal-
based codes which encompasses and generalizes the algorithms from Chapter
6. As a corollary, we extract an algorithm for list decoding CRT codes up

2.3 Detailed Description of Book Chapters 27

to (almost) the Johnson bound on list decoding radius (suitably adapted to
the case of the CRT codes). The unified paradigm emerging out of this study
could be of independent interest. These results are based on joint work with
Amit Sahai and Madhu Sudan [86].

Chapter 8 — List Decoding of Concatenated Codes. The results of the
previous chapters apply to codes over large alphabets (algebraic-geometric
codes exist over small alphabets, but their list decodability is limited by
certain barriers based on some deep results from algebraic geometry). It is
natural to ask if there are codes over fixed small alphabets, say binary codes
for concreteness, which can be list decoded efficiently from a large fraction of
errors. It turns out that the earlier results for Reed-Solomon and algebraic-
geometric codes play a critical role in answering this question — using them
as outer codes in suitable concatenation schemes yields constructions of bi-
nary codes of good rate and good list decodability. In particular, we present
a polynomial time construction of binary codes of rate Ω(ε4) that are list
decodable in polynomial time from a fraction (1/2 − ε) of errors (for ε > 0
as small a constant as we desire). This construction uses a combination of
the algorithmic results from Chapters 6 and the combinatorial results from
Chapter 5. The material from this chapter is a collection of results from
[89, 80, 90].

Chapter 9 — New, Expander-based List Decodable Codes. It fol-
lows from the results of Chapter 6 (on Reed-Solomon and algebraic-geometric
codes) that there are rate Ω(ε2) codes that can be efficiently list decoded up
to a fraction (1− ε) of errors. Reed-Solomon codes are defined over a large,
growing alphabet size, while algebraic-geometric achieve a constant (in fact
poly(1/ε)) alphabet size, but suffer from complicated and inefficient construc-
tions and decoding. It is natural to ask if there is a “better” construction of
codes that are list decodable up to a fraction (1 − ε) errors. This chapter
answers this question and presents a novel construction of such codes over a
constant-sized alphabet, along with a simple, near-quadratic time decoding
procedure. Furthermore, we know from Chapter 5 that, non-constructively,
a rate of Ω(ε) is feasible for codes with list decoding radius of (1 − ε). Us-
ing our basic construction, together with some other ideas, we are able to
construct codes of the optimal Ω(ε) rate that are list decodable up to a frac-
tion (1− ε) of errors in sub-exponential time. This is the first construction to
beat the “ε2-barrier” on rate and approach the optimal rate in a meaningful
way. This chapter also introduces several tools for code constructions such as
pseudolinear codes, multi-concatenated codes, and juxtaposed codes, which
are interesting in their own right. The material in this chapter is based on
joint work with Piotr Indyk [81].

Chapter 10 — List Decoding from Erasures. All prior chapters dealt
with the model where a certain fraction of the codeword symbols are ad-
versarially corrupted. A weaker noise model is that of erasures where a cer-

28 2 Preliminaries and Monograph Structure

tain adversarially chosen fraction of the codeword symbols are erased by the
channel. While this is an easier model to deal with, it also enables achiev-
ing better trade-offs and parameters. We prove combinatorial results akin
to those of Chapter 5 specialized for the case of erasures, and then use tech-
niques similar to those used in Chapters 8 and 9 to construct codes with good
(and sometimes near-optimal) rate and good erasure list decodability. A side
consequence of one of the results in this chapter is a provable asymptotic
separation between the performance of linear and general, non-linear codes
(with respect to erasure list decodability). Such an asymptotic separation
is quite rare in coding theory. The material in this chapter appears in the
papers [78, 82].

Part II: Summary. The algorithmic results of the above chapters show that
for several important and useful code families, there is an efficient algorithm
to list decode them up to (close to) the Johnson bound on list decoding radius.
These codes are defined over a large alphabet. However, one can use them as
outer codes in concatenated schemes together with suitable inner codes that
have list decodability properties similar to those guaranteed by the combina-
torial results (from Chapter 5). This enables us to get new constructions of
binary codes of good rate and excellent algorithmic list decodability.

2.3.3 Applications

Chapter 11 — Linear-time codes for unique decoding. This chapter
uses techniques similar to previous chapters, specifically Chapter 9, to build
codes of very good rate together with extremely efficient unique/unambiguous
decoding algorithms. Specifically, for every ε > 0 and 0 < r < 1, we construct
codes with rate r that can be encoded in linear time and can be unique
decoded from a fraction (1 − r − ε)/2 of errors in linear time. This trade-
off between rate and fraction of errors tolerated is optimal since it almost
matches the Singleton bound, and in addition we are able to get linear time
algorithms. We then concatenate these codes with suitable inner codes to get
binary codes that attain the so-called “Zyablov bound” together with linear-
time algorithms to perform encoding and decoding up to (almost) half the
minimum distance. These linear-time codes significantly improve the fraction
of errors corrected by the earlier linear-time codes due to Spielman [176]. Our
codes are obtained by using Spielman’s codes as a building block and then
boosting its error-resilience via suitable expander graphs using techniques
from [6, 7]. The results in this chapter are based on joint work with Piotr
Indyk [81, 82].

Chapter 12 — Sample Applications outside Coding Theory. We dis-
cuss some sample applications of list decoding outside coding theory. We
present an algorithmic application to the problem of guessing secrets, which
is a variant of the “20 questions” game played with more than one secret. List

2.3 Detailed Description of Book Chapters 29

decoding has found several compelling applications in complexity theory and
we discuss some of these including hardcore predicate constructions, hardness
amplification of boolean functions, constructions of extractors and pseudo-
random generators, inapproximability of NP witnesses, etc. The chapter also
discusses some applications of list decoding to cryptographic questions such
as cryptanalysis of certain block ciphers, finding smooth integers, and traitor
tracing.

2.3.4 Conclusions

Chapter 13 — Concluding Remarks. We conclude with a brief summary
and discuss some open questions and possible directions for future research.

2.3.5 Dependencies Among Chapters

A pictorial depiction of the interdependencies among the various technical
chapters is presented in Figure 2.2.

Chap. 3

Chap. 4

Chap. 6

Chap. 7 Chap. 8

Chap. 5

Chap. 9

Chap. 12 Chap. 11

Chap. 10

Algorithms

Combinatorics

Applications

Fig. 2.2. The interrelationship between various chapters. A solid line indicates a
dependency (in either techniques or results themselves). A dashed arrow from A
to B indicates a “soft” dependency; i.e., reading portions of A prior to B would
be helpful, but is not strictly necessary. A dotted line from A to B that results of
chapter A “motivate” the contents of chapter B, though there is no real dependency
in the results or techniques themselves.

We would like to point out that the separation of the combinatorial and
algorithmic results in this book is not a strict one. We only isolate the most
basic combinatorial results in Part I, namely those results which are inter-
esting independent of whether there are algorithmic results or not (though

30 2 Preliminaries and Monograph Structure

they do end up motivating and being used in several of the algorithms in
Part II anyway). Some combinatorial results can also be found in Part II. In
all such cases, due to the somewhat “local” nature of their application, we
chose to defer the presentation of the concerned combinatorial results to the
point where they are actually needed. Examples of such combinatorial results
discussed in Part II include: a version of the Johnson bound in Chapter 7
when the various codeword positions have different contributions towards
the minimum distance (this happens for the Chinese Remainder code), a
Johnson-type bound in Chapter 8 concerning the coset weight distribution
of codes as a function of the distance of the code, an existence result for
codes whose coset weight distribution has a certain property in Chapter 8,
results concerning pseudolinear codes in Chapters 9 and 10, and combinato-
rial bounds and existence results concerning erasure list decodable codes in
Chapter 10.

3 Johnson-Type Bounds and Applications to

List Decoding

This chapter, as well as the next one, explore the relation between the list
decoding radius and minimum distance of a code. Understanding the relation
between these parameters is useful for two reasons: (a) for several important
families of codes like Reed-Solomon codes, we have precise bounds on the
distance, and one can use the relation between list decoding radius and dis-
tance to understand the list decoding potential of these codes; and (b) this
shows that one approach to construct good list decodable codes is to con-
struct large distance codes, and the latter is a relatively well-studied and
better understood problem. Also, historically the most significant algorith-
mic results on list decoding have been fueled by an attempt to decode codes
whose good minimum distance highlighted their good combinatorial list de-
codability properties.

3.1 Introduction

In order to perform list decoding up to a certain number, say e, errors ef-
ficiently, we need the guarantee that every Hamming ball of radius e has a
“small” number of codewords. This is because the list decoding algorithm
will have a runtime that is at least the size of the list it outputs, and we want
the algorithm to be efficient even for the worst-case error pattern. The exact
size of the list can be either set to a suitably large constant (independent of
the blocklength), or to a fixed polynomial function of the blocklength.

Unique decoding is based upon the fact that in a code of minimum dis-
tance d any Hamming ball of radius less than d/2 can have at most one
codeword. For list decoding we would like upper bounds on the number of
codewords in a ball of radius e for e larger than d/2. A classical bound in
coding theory, called the Johnson bound [108, 109] (see also [132]), proves
an upper bound on the number of codewords at a Hamming distance exactly
e from an arbitrary word, as long as e is less than a certain function of the
distance and blocklength of the code. Such a bound is of direct interest to
constant-weight codes (which are codes all of whose codewords have the same
Hamming weight), and is also used in the Elias-Bassalygo upper bound on
the dimension of codes with certain minimum distance.

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 33-44, 2004.
© Springer-Verlag Berlin Heidelberg 2004

34 3 Johnson-Type Bounds and Applications to List Decoding

For purposes of list decoding, we need a Johnson-style bound for the
number of codewords at a distance of at most e (not exactly e) from a received
word. In this chapter, we present a very general version of such a bound.
Owing to their strong resemblance to the Johnson bound, we call our bounds
Johnson-type (or simply, Johnson) bounds. The main result of this chapter
is the fact any q-ary code of blocklength n and distance d is list decodable
with “small” lists for up to eJ(n, d, q) errors, where eJ(n, d, q) is a function
only of n, d, q (and not the structure of the code). We call this quantity
eJ(n, d, q) the “Johnson bound on list decoding radius” or “Johnson radius”
of the code, and it is always greater than d/2.

Proofs of the Johnson bound seem to come in one of two flavors. The
original proof and some of its derivatives follow a linear algebra based argu-
ment [108, 109, 50, 73, 89], while more recent proofs, most notably [128, 53, 1]
are more geometric. Our proof follows the latter spirit, extending these proofs
to the case of general alphabets.

Moreover, our techniques easily allow us to extend our results and also
prove a weighted version of the Johnson bound which is of interest to some
questions raised by the investigations on “soft” list decoding algorithms (more
details on this and the connection to soft decoding will be discussed in later
chapters in Part II of the book).

3.2 Definitions and Notation

We first recall some notation. For x,y ∈ [q]n the Hamming distance between
x and y is denoted Δ(x,y). For r ∈ [q]n and 0 ≤ e ≤ n, the Hamming ball
of radius e around r is defined by Bq(r, e) = {x ∈ [q]n : Δ(r,x) ≤ e}.

The key quantity to study in our context is the following. Let A′
q(n, d, e)

denote the maximum number of points that may be placed in some ball
Bq(r, e) such that all pairwise distances between the points are at least d.
More formally,

A′
q(n, d, e) = max{|S| : S ⊆ Bq(r, e) for some r ∈ [q]n and ∀x,y ∈ S,

Δ(x,y) ≥ d} . (3.1)

(We use the notation A′
q(n, d, e) instead of the apparently more natural choice

Aq(n, d, e) because the notation Aq(n, d, e) in coding theory literature nor-
mally refers to the maximum number of points (with pairwise distances at
least d) that may be placed on the surface of (instead of within) the ball
Bq(r, e). To avoid confusion with this standard terminology, we use A′

q(n, d, e)
instead. We clearly have Aq(n, d, e) ≤ A′

q(n, d, e), and thus any upper bound
we derive on A′

q(n, d, e) also applies to Aq(n, d, e).)
Clearly for any code C ⊆ [q]n of minimum distance d, A′

q(n, d, e) is an
upper bound on the number of codewords of C that can lie in a Hamming

3.3 The Johnson Bound on List Decoding Radius 35

ball of radius e. Hence, our objective in this chapter is to obtain an upper
bound on the function A′

q(n, d, e).
It is common practice to denote these functions as A(n, d, e) and A′(n, d, e)

for the binary (q = 2) case.

3.3 The Johnson Bound on List Decoding Radius

Theorem 3.1 ([91, 1]). Let C be any q-ary code of blocklength n and
minimum distance d = (1 − 1/q)(1 − δ)n for some 0 < δ < 1. Let
e = (1 − 1/q)(1 − γ)n for some 0 < γ < 1 and let r ∈ [q]n be arbitrary.
Then, provided γ >

√
δ, we have

|Bq(r, e) ∩ C| ≤ min
{

n(q − 1),
1− δ

γ2 − δ

}
. (3.2)

Furthermore, for the case when γ =
√

δ, we have |Bq(r, e)∩C| ≤ 2n(q−1)−1.

The theorem below is merely a restatement of the above result in different no-
tation, and follows immediately from the above result (it is a straightforward
calculation to check this).

Theorem 3.2. Let q, n, d be arbitrary positive integers with d < (1−1/q)n.

(i) Let e ≥ 1 be any integer that satisfies the condition

e < eJ(n, d, q) def=
(
1− 1

q

)(
1−

√
1− q

q − 1
· d

n

)
n . (3.3)

Then we have

A′
q(n, d, e) ≤ min{n(q − 1),

nd

nd− 2e
(
n− qe

2(q−1)

)} . (3.4)

In other words, for an integer L ≥ 1, if

e ≤ eJ(n, d, q, L) def= n
(
1− 1

q

)(
1−

√
1− q

q − 1
L− 1

L

d

n

)
, (3.5)

then A′
q(n, d, e) ≤ L.

(ii) Furthermore, if e = eJ(n, d, q), then A′
q(n, d, e) ≤ 2n(q − 1)− 1.

The above theorem says that a q-ary code of blocklength n and distance
d can be list decoded with small lists for up to eJ(n, d, q) errors. For purposes
of easy future reference, we give the quantity eJ(n, d, q) the label “Johnson
bound on list decoding radius” , or simply the “Johnson radius” of a code.

36 3 Johnson-Type Bounds and Applications to List Decoding

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
A

D
IU

S
 (

=
 e

/n
)

RELATIVE DISTANCE (= d/n)

Johnson Radius
Half the distance

Fig. 3.1. Plot of Johnson radius as a function of relative distance for binary codes.
This shows that list decoding always permits decoding beyond half the distance.

When we want to make the alphabet size explicit, we will refer to eJ(n, d, q)
as the “q-ary Johnson radius”. For decoding with lists of size L, we give the
quantity eJ(n, d, q, L) the label “Johnson radius for list-of-L decoding”.

It is easy to verify that the Johnson radius eJ(n, d, q) defined in Equation
(3.3) satisfies

eJ(n, d, q) > d/2

for every n, d, q with 1 ≤ d ≤ (1 − 1/q)n. This captures the claim that list
decoding with polynomial-sized lists always permits one to decode beyond half
the distance. As an illustration, we plot the Johnson radius for binary codes
in Figure 3.1, normalized by blocklength, as a function of the relative distance
of the code. Note for any every value of the relative distance δ in the range
0 < δ < 1/2, the Johnson radius is strictly greater than half the minimum
distance.

Before moving on to the proof of Theorem 3.1, we state the following
corollary to the above statement. This gives a (weaker) version of the above
bounds that ignores the alphabet size q of the code. But it has a simpler,
easily stated form, and for large q approaches the above bounds.

Corollary 3.3. Let q, n, d, e be arbitrary positive integers with e ≤ d ≤ n.

(i) If e < n−√
n(n− d), then A′

q(n, d, e) ≤ n(q − 1).
(ii) if e ≤ n−√

n(n− d + d/L), then A′
q(n, d, e) ≤ L.

3.3 The Johnson Bound on List Decoding Radius 37

Proof: The proof follows from Theorem 3.2 and the fact that

(1−√
1− x) ≤ (1− 1/q)

(
1−

√
1− qx

q − 1
)

for every integer q and every x, 0 ≤ x ≤ (1− 1/q). The above inequality can
be proved using a straightforward calculation. Using the above inequality
with x = d/n and x = L−1

L
d
n implies that the conditions on e stated in the

corollary imply the Conditions (3.3) and (3.5) respectively. �

3.3.1 Proof of Theorem 3.1

Proof Idea: The proof follows a “geometric” approach. We identify elements
of [q]n with vectors in Rnq by replacing the symbol i (1 ≤ i ≤ q) by the unit
vector of length q with a 1 in position i. This allows us to embed the codewords
and the “received” word r into Rnq. Next, by appropriately shifting the set
of vectors corresponding to the codewords that are close to r, we get a set
of vectors such that the inner product of any two distinct vectors from this
set is non-positive. By a standard geometric upper bound on the cardinality
of such a set of vectors, we get the required upper bound on the number of
codewords that are “close” to r.

Our idea extends proofs for the binary case, given by [53, 128, 1]. These
works used an appropriate embedding of the binary codewords in Rn and
an appropriate shifting of vectors to establish “Johnson-style” bounds by
appealing to bounds on spherical codes, i.e., bounds on the cardinality of a
set of unit vectors in real space with a specified minimum angle between any
pair of vectors. It may be noted that the generalization to arbitrary alphabets
is not automatic. (Of the several potential approaches, our proof hits upon
the right path.)

Proof of Theorem 3.1: Assume without loss of generality that r =
〈q, q, . . . , q〉, i.e is the symbol q repeated n times. Let C1, C2, . . . , Cm be all
the codewords of C that lie within Bq(r, e) where e = (1− 1/q)(1− γ)n. Our
goal is to get an upper bound on m provided γ is large enough.

We associate a vector in Rnq with r and with each codeword Ci. Each
vector is to be viewed as having n blocks each having q components (the n
blocks correspond to the n codeword positions). For 1 ≤ l ≤ q, denote by êl

the q-dimensional unit vector with 1 in the lth position and 0 elsewhere. For
1 ≤ i ≤ m, the vector ci associated with the codeword Ci has in its jth block
the components of the vector êCi[j] (Ci[j] is the jth symbol of Ci, treated as
an integer between 1 and q). The vector associated with the received word r,
which we also denote r by abuse of notation, is defined similarly. Let 1 ∈ Rnq

be the all 1’s vector. Now define v = αr + (1−α)
q 1 for a parameter 0 ≤ α ≤ 1

to be specified later in the proof. Note that the ci’s and v all lie in the space
defined by the intersection of the n “hyperplanes” { H′

j :
∑q

�=1 xj,� = 1 } for

38 3 Johnson-Type Bounds and Applications to List Decoding

large

small

small

O O’

c_1

c_2

r

>90

v

Fig. 3.2. Geometric picture behind proof of Theorem 3.1

1 ≤ j ≤ n. Hence the vectors (ci − v), for 1 ≤ i ≤ m, all lie in H =
⋂n

j=1Hj

where Hj = {x ∈ Rnq :
∑q

�=1 xj,� = 0}. It is easy to see that H is an
n(q − 1)-dimensional subspace of Rnq. We thus conclude that the vectors
(ci − v), 1 ≤ i ≤ m, all lie in an n(q − 1)-dimensional space.

The idea behind the rest of the proof is the following. We will pick α so
that the vectors (ci − v), for 1 ≤ i ≤ m, have all pairwise dot products less
than 0. Geometrically speaking, we shift the origin O to O′ where OO′ =
v, and require that relative to the new origin the vectors corresponding to
the codewords have pairwise angles which are greater than 90 degrees (see
Figure 3.2). By a simple geometric fact (stated in Lemma 3.4 below), it will
then follow that the number of codewords m is at most the dimension n(q−1)
of the space in which all these vectors lie.

For 1 ≤ i ≤ m, let ei = Δ(r, Ci). Note that ei ≤ e for every i. Now

〈ci,v〉 = α〈ci, r〉+
(1− α)

q
〈ci,1〉 = α(n− ei) + (1− α)

n

q
(3.6)

〈v,v〉 = α2n + 2(1− α)α
n

q
+ (1− α)2

n

q
=

n

q
+ α2

(
1− 1

q
)n (3.7)

〈ci, cj〉 = n−Δ(Ci, Cj) ≤ n− d . (3.8)

Using (3.6), (3.7) and (3.8), and the fact that each ei ≤ e, we get, for i
= j,

〈ci − v, cj − v〉 ≤ 2αe− d +
(
1− 1

q

)
(1− α)2n . (3.9)

3.3 The Johnson Bound on List Decoding Radius 39

Using e = (1− 1/q)(1− γ)n and d = (1− 1/q)(1− δ)n the above simplifies to

〈ci − v, cj − v〉 ≤
(
1− 1

q

)
n
(
δ + α2 − 2αγ

)
(3.10)

Thus as long as γ > 1
2

(
δ
α + α

)
we will have all pairwise dot products to be

negative just as we wanted. We pick α to minimize
(

δ
α +α

)
, or in other words

we set α =
√

δ. Now as long as γ >
√

δ, we will have 〈ci − v, cj − v〉 < 0
for all 1 ≤ i < j ≤ m. To complete the proof, we note that (for the choice
α =

√
δ), for every 1 ≤ i ≤ m, 〈ci − v,v〉 ≥ (1 − 1/q)n

√
δ(γ − √

δ) > 0
(this is easily checked using (3.6) and (3.7)). Thus provided γ >

√
δ, we have

〈ci − v,v〉 > 0 for 1 ≤ i ≤ m. Now applying Part (iii) of Lemma 3.4, with
the setting vi = ci − v and u = v|H, the projection of v onto the subspace
H, implies that m ≤ n(q− 1) (recall that the vectors (ci − v), 1 ≤ i ≤ m, all
lie in H and dim(H) = n(q − 1)).

We now prove that if γ >
√

δ, then m ≤ 1−δ
γ2−δ . For this we set α = γ.

Now from Equation (3.10) we have

〈ci − v, cj − v〉 ≤ (1− 1/q)n(δ − γ2) . (3.11)

Thus if γ >
√

δ, we have 〈ci − v, cj − v〉 < 0. Now for the choice α = γ, we
have for each i, 1 ≤ i ≤ m,

‖ci−v‖2 = 〈ci − v, ci − v〉 ≤ 2αe+(1−1/q)(1−α)2n = n(1−1/q)(1−γ2) .

Denote by wi the unit vector − ci−v
‖ci−v‖ . We then have

〈wi,wj〉 ≤ −γ2 − δ

1− γ2
(3.12)

for 1 ≤ i < j ≤ m (this follows from (3.11) and (3.12)). By a well-known
geometric fact (see Lemma 3.5 for the simple proof), it follows that the
number of such vectors, m, is at most

(
1 + 1−γ2

γ2−δ

)
= 1−δ

γ2−δ , as desired.
To handle the case when γ =

√
δ, we can choose α =

√
δ, and we then have

〈ci − v, cj − v〉 ≤ 0 for all 1 ≤ i < j ≤ m, and also 〈ci − v,v〉 ≥ 0 for each
i = 1, 2, . . . , m. Now applying Part (ii) of Lemma 3.4, we get m ≤ 2n(q−1)−1.
�

3.3.2 Geometric Lemmas

We now state and prove the geometric facts that were used in the above
proof.

Lemma 3.4. Let v1, . . . ,vm be non-zero vectors in RN such that 〈vi,vj〉 ≤ 0
for all 1 ≤ i < j ≤ m. Then the following hold:

40 3 Johnson-Type Bounds and Applications to List Decoding

(i) m ≤ 2N .
(ii) Suppose that there exists a non-zero u ∈ RN such that 〈u,vi〉 ≥ 0 for

i = 1, 2, . . . , m. Then m ≤ 2N − 1.
(iii) Suppose there exists an u ∈ RN such that 〈u,vi〉 > 0 for i = 1, 2, . . . , m.

Then m ≤ N .

A proof of Part (i) of the above lemma can be found, for instance, in
[30, Chapter 10, page 71]. The proofs of the other two parts are similar. For
completeness, we present a self-contained proof below.

Proof of Lemma 3.4: We first prove (iii). Suppose for contradiction that
m ≥ N + 1. Then since the vectors v1, . . . ,vm all lie in RN , they must be
linearly dependent. Let S ⊆ [m] be a non-empty set of minimum size for which
a relation of the form

∑
i∈S aivi = 0 holds with each ai
= 0. We claim that

the ai’s must all be positive or all be negative. Indeed, if not, by collecting
terms with positive ai’s on one side and those with negative ai’s on the
other, we will have an equation of the form

∑
i∈T+ aivi =

∑
j∈T− bjvj = w

(for some vector w) where T + and T− are disjoint non-empty sets with
T + ∪ T− = S, and all ai, bj > 0. By the minimality of S, w
= 0 and
hence 〈w,w〉 > 0. On the other hand 〈w,w〉 = 〈∑i∈T+ aivi,

∑
j∈T− bjvj〉 =∑

i,j aibj〈vi,vj〉 ≤ 0 since aibj > 0 and 〈vi,vj〉 ≤ 0 for each i ∈ T + and
j ∈ T−. This contradiction shows that we may assume that ai > 0 for all
i ∈ S.

Now
∑

i∈S aivi = 0, so that
∑s

i=1 ai〈u,vi〉 = 0. But this is impossible
since for each i we have ai > 0 and 〈u,vi〉 > 0. We have thus arrived at a
contradiction, and therefore such a linear dependence

∑
i∈S aivi = 0 does

not exist. Thus the vectors v1,v2, . . . ,vm are linearly independent and we
must have m ≤ N .

To prove (ii), we use induction on N . The statement clearly holds for
N = 1. For N > 1, we proceed exactly as above. If m ≤ N , we have nothing
to prove, so assume m > N so that v1, . . . ,vm are linearly independent,
and as above, let S ⊆ [m] be a non-empty set of minimum size for which a
relation of the form

∑
i∈S aivi = 0 holds with each ai
= 0. Arguing as above,

we may assume that ai > 0 for every i ∈ S. Assume for definiteness that
S = {1, 2, . . . , s}. We thus have the linear dependence

∑s
i=1 aivi = 0 with

each ai > 0, and since this is a minimum sized linear dependence, v1, . . . ,vs

must span a subspace W of RN of dimension (s− 1).
Since

∑s
i=1 aivi = 0, we have

∑s
i=1 ai〈vi,v�〉 = 0 for each � = s +

1, . . . , m. Since ai > 0 for 1 ≤ i ≤ s and 〈vi,v�〉 ≤ 0, it must be therefore be
the case that vi is orthogonal to v� for all i, � with 1 ≤ i ≤ s and s < � ≤ m.
A similar argument shows u is orthogonal to vi for each i = 1, 2, . . . , s. Thus
the vectors vs+1, . . . ,vm and u all lie in W⊥ which has dimension equal to
(N − s + 1). Since s > 1, the induction hypothesis applied to these vectors
implies that m−s ≤ 2(N−s+1)−1, or in other words m ≤ 2N−s+1 ≤ 2N−1,
as desired.

3.4 Generalization in Presence of Weights 41

Finally (i) follows immediately from (ii). Indeed, apply (ii) with vectors
v1, . . . ,vm−1 and −vm playing the role of u. This implies m− 1 ≤ 2N − 1,
or in other words m ≤ 2N . �
Lemma 3.5. Let ε > 0 be a positive real and let w1,w2, . . . ,wm be m unit
vectors such that 〈wi,wj〉 ≤ −ε for all 1 ≤ i < j ≤ m. Then m ≤ 1 + 1

ε .

Proof: We have

0 ≤ 〈
m∑

i=1

wi,

m∑
i=1

wi〉 =
m∑

i=1

〈wi,wi〉+ 2
∑

1≤i<j≤m

〈wi,wj〉 ≤ m−m(m− 1)ε ,

which gives m ≤ 1 + 1/ε. �

3.4 Generalization in Presence of Weights

For applications to “soft” list decoding algorithms which will be discussed
in Part II of the book, it is of interest to prove a version of the Johnson
bound in the presence of weights on codeword symbols. Such a bound is also
of independent interest, since it covers the case of decoding under errors-
and-erasures and the case when for each position one receives a small list
of candidate symbols one of which is the correct one, all under a uniformly
applicable bound.

We next state the weighted version of the Johnson bound that follows
from our proof technique. The bound in Part (i) of the theorem generalizes
the result of Theorem 3.2. The result from Part (ii) applies under a more
general condition than Condition (3.3) (or even Condition (3.13)), but the
upper bound itself is slightly weaker (since it is (nq− 1) instead of n(q− 1)).
The result of Part (iii) generalizes the result of Theorem 3.2, Condition 3.5.

Theorem 3.6. Let C ⊆ [q]n be a code of blocklength n and minimum distance
d. Let {wi,j : 1 ≤ i ≤ n; 1 ≤ j ≤ q} be an arbitrary set of non-negative real
weights. Define Wi =

∑q
j=1 wi,j and W

(2)
i =

∑q
j=1 w2

i,j , Wtot =
∑

i,j wi,j,

and W
(2)
tot =

∑
i,j w2

i,j. Then:

(i) The number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci

Wi
>

n

q
+

√√√√(
n
(
1− 1

q

)
− d

)(n∑
i=1

W
(2)
i

W 2
i

− n

q

)
. (3.13)

is at most n(q − 1).
(ii) The number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci >
Wtot

q
+

√(
n
(
1− 1

q

)
− d

)(
W

(2)
tot −

(Wtot)2

nq

)
(3.14)

is at most (nq − 1).

42 3 Johnson-Type Bounds and Applications to List Decoding

(iii) For any integer L ≥ 2, the number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci ≥
Wtot

q
+

√(
n
(
1− 1

q

)
− d +

d

L

)(
W

(2)
tot −

(Wtot)2

nq

)
(3.15)

is at most L.

Proof: We do not give a full proof here, rather we indicate the only changes
that must be made to the proof of Theorem 3.1 in order to prove our claim.
For Part (i), the only modification required in the proof of Theorem 3.1 is to
pick r so that its (i, j)’th component, for 1 ≤ i ≤ n and 1 ≤ j ≤ q, equals
wi,j

Wi
. The vector v is defined as before to be αr + (1−α)

q 1 for

α =

√√√√n(1− 1/q)− d∑
i

W
(2)
i

W 2
i
− n/q

.

Once once again all the vectors (ci−v) lie in an n(q−1)-dimensional subspace
of Rnq. It can be proved as in the proof of Theorem 3.1 that these vectors
have pairwise non-positive dot products, which gives the desired n(q − 1)
upper bound on the number of codewords.

For Parts (ii) and (iii), we pick r so that its (i, j)’th component for 1 ≤
i ≤ n and 1 ≤ j ≤ q, equals nwi,j

Wtot
, and the rest of the proof follows that of

Theorem 3.1. Note that Wtot/q is the expected value of
∑

i wi,ri for a random
vector r ∈ [q]n, and

(
W

(2)
tot − (Wtot)

2

nq

)
is proportional to the variance of the

wi,j ’s. Thus, the above theorem states that the number of codewords which
have weighted agreement bounded away from the expectation by a certain
number of standard deviations is small. The upper bound of (nq−1) (instead
of n(q−1)) in Part (ii) of above theorem arises since we are only able to ensure
that the vectors (ci − v) all lie in an (nq − 1)-dimensional subspace (namely
that defined by

∑
i,j xi,j = 0), and not an n(q − 1)-dimensional subspace as

in Part (i). �

We now state a corollary similar to Corollary 3.3 that ignores the alpha-
bet size in the decoding condition. The proof again follows because it can
be verified (after a straightforward but tedious calculation) that the stated
conditions in fact imply the Conditions (3.14) and (3.15) above.

Corollary 3.7. Let C ⊆ [q]n be a code of blocklength n and minimum distance
d. Let {wi,j : 1 ≤ i ≤ n; 1 ≤ j ≤ q} be an arbitrary set of non-negative real
weights.

(i) The number of codewords C ∈ C that satisfy
n∑

i=1

wi,Ci >
(
(n− d)

∑
i,j

w2
i,j

)1/2

(3.16)

is at most (nq − 1).

3.5 Notes 43

(ii) For any integer L ≥ 2, the number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci ≥
((

n− d +
d

L

)∑
i,j

w2
i,j

)1/2

(3.17)

is at most L.

A bound similar to Corollary 3.7 above can also be worked out for the case
when the different codeword positions have different contributions towards
the minimum distance. Such a bound is of interest for certain codes like the
Chinese Remainder Code and will be stated and formally proved in the form
of Theorem 7.10 in Section 7.6.1 of the book. We refer the reader interested
in seeing a full proof of Corollary 3.7 above to the proof of Theorem 7.10.

3.5 Notes

The quantity A(n, d, w) for constant-weight binary codes has a rich history
and has been studied for almost four decades, and its study remains one of the
most basic questions in coding theory. The first upper bounds on the quantity
A(n, d, w) for constant-weight codes appear in the work of Johnson [108,
109]. Since then several proofs have appeared in the literature, including
generalizations of the bound to the case of q-ary alphabets for q > 2 (cf. [34]
for a discussion and detailed bibliography).

The quantity A′(n, d, e), which is of more direct interest to list decoding,
seems to have received much less explicit attention. It must be said that
several proofs that provide upper bounds on A(n, d, e) work with little or
no modification to yield upper bounds on A′(n, d, e) as well. This was made
explicit for example in [50, 22]. Upper bounds on A′

q(n, d, e) identical to the
second upper bound in (3.4) of this chapter are stated in [34]. Proofs of such
bounds that follow a linear algebra based argument appear, for instance, in
[73, 89].

The contribution of the results in this chapter is that we extend the more
recent upper bounds for the binary case from [1] (which are based on geo-
metric arguments) to bounds on A′

q(n, d, e), and furthermore we obtain some
elegant weighted generalizations of the Johnson bound. In particular, the
upper bound A′

q(n, d, e) ≤ n(q − 1) for e < eJ (n, d, q) that we proved in
Theorem 3.2 appears to be new. For the case q = 2, this result was known.
Specifically, Elias [48] proved that if d is odd, then A′(n, d, e) ≤ n as long
as e is at most the binary Johnson radius eJ(n, d, 2). For even d, however,
A′(n, d, e) = O(n2) was the best known bound that was made explicit till the
recent work of Agrell, Vardy and Zeger [1], who showed that A′(n, d, e) ≤ n
whenever e < eJ(n, d, 2). (Actually, Agrell et al claim their result only for
A(n, d, e), but their proof works for the case of A′(n, d, e) as well.)

44 3 Johnson-Type Bounds and Applications to List Decoding

Combinatorial results of a flavor similar to this chapter appear in two
other parts of the book: (a) in Section 7.6.1 where a bound similar to Corol-
lary 3.7 is proved for the case when the minimum distance is measured with a
non-uniform weight on the codeword positions, and (b) in Section 8.5.1 where
we prove a result along the lines of Theorem 3.2, but instead of bounding
the number of codewords in a Hamming ball of certain radius, we establish a
more general result concerning the coset weight distribution of a code, purely
as a function of its minimum distance.

The material in this chapter appears in [91].

4 Limits to List Decodability

4.1 Introduction

The previous chapter showed that every code of certain minimum distance
has an associated “Johnson radius” which gives a lower bound on the list
decoding radius (in other words, every Hamming ball of radius up to the
Johnson radius has “few” codewords). This result plays an important role in
the development of the subject of list decoding. Indeed, by showing that any
code with large distance has large list decoding radius, it raises algorithmic
questions concerning list decoding important families of codes beyond half
the minimum distance.

But at a purely combinatorial level, this also raises the following natural
question on the “optimality” of the results from the previous chapter: Is the
Johnson radius the best possible bound on list decoding radius in terms of
the minimum distance, or could there be an even better lower bound on the
list decoding radius of a code?

This chapter addresses the above question. The results of this chapter
demonstrate that the Johnson radius is indeed essentially tight as a general
relation between list decodability and minimum distance. Note that this does
not say that for every code the Johnson bound on list decoding radius is
the correct one – rather, it says there exist some codes for which this is
the case.1 In other words, purely as a function of the distance of the code,
the Johnson radius gives (asymptotically) the best possible bound on list
decoding radius. The basic strategy behind showing this is to construct a
code family of certain relative minimum distance which has a large (super-
constant or super-polynomial, depending upon the actual result) number of
codewords within a Hamming ball of radius close to the Johnson radius.

We should remark that for general, non-linear codes, it was already known
(by a simple proof) that one can have exponentially many codewords just
beyond the Johnson radius (see for instance [73] – their result is formally
stated in Section 4.3.1). Indeed a random constant-weight code with suitable
parameters has this property with high probability. The thrust of this chapter
is, therefore, on linear codes. Note that most of the interesting code families

1Indeed the results of the next chapter demonstrate that for most codes, the
Johnson radius is not the best possible bound on the list decoding radius.

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 45-78, 2004.
© Springer-Verlag Berlin Heidelberg 2004

46 4 Limits to List Decodability

are linear, and it is therefore important to understand the list decodability vs.
distance trade-off restricted to linear codes. Also, for the sake of simplicity,
we focus on binary codes in this chapter.

We stress that imposing the requirement of linearity makes the problem
significantly harder, and the results presented in this chapter represent the
first asymptotic results that give non-trivial linear code constructions with
the property that there exist “several” codewords in a ball of “small” (as a
function of the distance) radius.

We should also mention here that the results of this chapter by their very
nature are rather technical. While an appreciation for the statement of the
results in this chapter is useful to put the various pieces of the book in context,
the results themselves, and more so the proofs, are fairly independent of the
rest of the book. The reader might therefore want to skip some of the proofs
in a first reading.

4.2 Informal Description of Results

The main results of this chapter are informally stated below. (A formal de-
scription of the results in the form of theorem statements will be given in
Section 4.3 after the relevant notation and formalism is developed.) All re-
sults are for binary linear codes. Recall from the previous chapter (specifically,
Equation (3.3) from Theorem 3.2) that the Johnson radius (normalized by
blocklength) of a binary code of relative distance δ (0 ≤ δ ≤ 1/2) equals

J(δ) =
1−√

1− 2δ

2
. (4.1)

The results proven in this chapter include:

1. The list decoding radius for constant-sized lists approaches the Johnson
radius of a code; in other words for any constant L and relative distance
δ, there exist linear codes with more than L codewords in a Hamming
ball of relative radius close to J(δ). This is established in Section 4.4.

2. The list decoding radius for list size polynomially bounded in the block-
length is strictly less than the relative distance. Specifically, for every
δ, 0 < δ < 1/2, there exist codes of relative distance δ with a ball of
relative radius strictly less than δ containing super-polynomially many
codewords. This is established in Section 4.5.

3. The above two results are non-constructive in that either the code or
the center of the ball with many codewords is not explicitly specified.
In Section 4.6, we exhibit an explicit code and an explicit center of a
Hamming ball containing more than nc codewords, for each fixed constant
c. In addition to their combinatorial appeal, such explicit constructions,
if sufficiently strong quantitatively, are relevant to derandomizing the
known inapproximability result for computing the minimum distance of
a linear code [44].

4.3 Formal Description of Results 47

4. The list decoding radius for list size growing polynomially in the block-
length approaches the Johnson radius. In other words, for every δ, there
exist linear codes of relative distance δ that have a super-polynomial
number of codewords in some Hamming ball of relative radius close to
J(δ). This result is stronger than that stated above as Result 2. However,
we are able to prove this result only under a number-theoretic conjecture.
The conjecture is a widely believed one (it is a very special case of the
“Artin conjecture”), and is in particular known to hold under the Gen-
eralized Riemann Hypothesis (GRH).

4.3 Formal Description of Results

4.3.1 The Result for Non-linear Codes

Before describing our results for linear codes, we recall the following result
from [73] that shows that the Johnson bound on list decoding radius is tight
for general, non-linear codes. We state the result only for binary codes – an
analogous statement also holds for q-ary codes. The proof is quite straight-
forward and follows by picking a random constant weight code with a certain
number of codewords and then arguing that it has “good” distance with high
probability. This gives several codewords in a small Hamming ball centered
at the all-zeroes word. The reader is referred to [73] for further details on the
proof.

Proposition 4.1 ([73]). For every δ, 0 < δ < 1/2, for all small enough
ε > 0, and for all sufficiently large n, there exists a (non-linear) binary code
of blocklength n and relative distance at least δ, that has at least 2Ω(ε2n)

codewords in a Hamming ball of radius n
2

(
1 + ε−√

1− 2δ − ε
)
.

The Johnson bound (Theorem 3.2) states that the number of codewords
in a Hamming ball of radius n

2 (1 − √
1− 2δ) is at most 2n. Therefore the

above establishes that in a ball of radius slightly greater than the Johnson
radius, there could in fact be exponentially many codewords.

4.3.2 Definitions

We first develop the necessary notation and definitions in order to describe
our results formally.

Definition 4.2 (Lower bound on list decoding radius). For a distance
parameter δ, 0 ≤ δ ≤ 1/2, and list size � : Z+ → Z+, the lower bound on
list of � decoding radius for binary linear codes of relative distance δ, denoted
L�(δ), is defined to be

L�(δ) = inf
C | δ(C)≥δ

LDR�(C) ,

48 4 Limits to List Decodability

where the infimum is taken over all binary linear code families of relative
distance at least δ.

One could also define the above function L�(δ) for relative distance δ
which is a function of the blocklength. In this case, the infimum above would
be taken over codes families C = {Ci}i≥1 that satisfy dist(Ci) ≥ δ(ni) · ni

where ni is the blocklength of Ci for i ≥ 1.
Note that the terminology “lower bound on list decoding radius” comes

from the fact that L�(δ) is the maximum fractional radius r for which every
code of blocklength n and relative distance δ is guaranteed to have at most
�(n) codewords in any Hamming ball of radius rn. In other words, every code
of relative distance δ has list decoding radius at least L�(δ).

We will be interested in studying the above function for the case of list
size being a constant or growing as a polynomial in the blocklength. To do
so, we need further definitions.

Definition 4.3. For real distance 0 ≤ δ < 1/2 and an integer constant c ≥
1:

(i) The quantity Lconst
c (δ) is defined to be L�(δ) where �(n) = c is a constant

function.
(ii) The quantity Lpoly

c (δ) is defined to be lim supc1→∞ L�c1
(δ) where �c1(n) =

c1n
c.

(iii) The quantity Lconst(δ) is defined as lim supc→∞{Lconst
c (δ)}.

(iv) The quantity Lpoly(δ) is defined as lim supc→∞{Lpoly
c (δ)}.

4.3.3 Statement of Results

It is straightforward to verify that, in the above notation, the result of The-
orem 3.2 from the previous chapter implies the following:

Proposition 4.4. For every δ, 0 ≤ δ ≤ 1/2 and integer c ≥ 1,

Lconst
c (δ) ≥ 1

2
(
1−

√
1− 2δ +

2δ

c

)
.

As a corollary, we have Lconst(δ) ≥ J(δ) = (1−√
1− 2δ)/2.

Thus the above gives a lower bound on Lconst(δ). The first result is that
this lower bound is tight:

Theorem 4.5. For every δ, 0 ≤ δ ≤ 1/2, Lconst(δ) = J(δ) = (1 −√
1− 2δ)/2.

Given the precise understanding of the Lconst function from the above
theorem, we are next interested in understanding the functions Lpoly

c and
Lpoly. Here we make the following conjecture that the Johnson bound is in

4.3 Formal Description of Results 49

fact tight even for list decoding with polynomial-sized lists. (The result of
Proposition 4.1 implies that the conjecture holds if one allows non-linear
codes, but for linear codes, which are the focus of this chapter, the bound on
Lpoly(δ) stated below remains a conjecture.)

Conjecture 4.6. For every 0 < δ < 1/2, Lpoly(δ) = 1
2 ·
(
1−√

1− 2δ
)
.

If true, the above can be viewed as the main point of this chapter. How-
ever, we are as yet unable to settle the conjecture. But we are able to prove it
(see Theorem 4.7 below) assuming a widely accepted number-theoretic con-
jecture which is in turn implied by the Generalized Riemann Hypothesis.2

Theorem 4.7. Assume that there exist infinitely many primes p such that 2
is a generator of the cyclic multiplicative group F∗

p of Fp. Then Lpoly(δ) =
J(δ).

Hence, there is strong evidence for the truth of the conjecture. We are also
able to prove some non-trivial unconditional results that lend further support
to the conjecture. We list the relevant results below. The proofs will be given
in later sections.

Theorem 4.8. For every ε > 0, for some δ : Z → Z satisfying δ(n) =
1
2

(
1−Θ((log n)ε−1)

)
, we have Lpoly(δ) ≤ 1

2 [1− (1− 2δ)1/2+ε].

The above can be viewed as a “resolution” of Conjecture 4.6 for the
case δ = 1/2− o(1). Moreover, it is shown by an explicit construction of the
underlying code and the center of the Hamming ball. The technique also leads
to an explicit construction demonstrating that Lpoly

c (δ) < δ for all c ≥ 1 and
0 < δ < 1/2, as stated below.

Theorem 4.9. For every integer c ≥ 1 and every δ, 0 < δ < 1/2, there exists
ρ < δ, and an explicit family {Ci}i≥1 of binary linear codes of blocklength ni

and relative distance at least δ and an explicit sequence of centers {wi}i≥1,
such that for every i ≥ 1, the number of codewords of Ci that differ from wi

in at most ρni positions is at least nc
i . (Or in other words, we can prove that

Lpoly
c (δ) < δ by an explicit construction.)

We are also able to show, unconditionally and using a simpler argument,
that the list decoding radius for polynomial-sized lists is strictly bounded
away from the distance of the code (Theorem 4.10). Moreover, we are able to
show this by demonstrating an exponential (i.e., 2Ω(n) where n is the block
length) number of codewords in a ball of relative radius less than δ. However,
we do not know how to explicitly specify the center of the ball in the below
construction.

Theorem 4.10. For every δ, 0 < δ < 1/2, we have Lpoly(δ) < δ.
2Subsequent to the publication of the initial version of this work, in joint work

with Shparlinski [87], we showed unconditionally that Lpoly(δ) is very close to J(δ).
More details on this appear in Section 4.7.3.

50 4 Limits to List Decodability

The Artin Conjecture and the Hypothesis of Theorem 4.7

The hypothesis of the above theorem is a special case of the Artin conjecture
(see [13]) which gives an estimate of the density of primes p for which 2, or for
that matter any fixed prime g, is a generator for the cyclic group F∗

p (for most
g this density is conjectured to be quite close to 0.4). It is known that the
Artin conjecture, with some correction factors in the density estimate, holds
under the Generalized Riemann Hypothesis (GRH) [99] (see also [105] for an
account on the some of the remarkable progress that has been made towards
resolving the Artin conjecture). It follows that the hypothesis of Theorem 4.7
holds under the GRH.

Note that the bound of Theorem 4.10 is implied by that of Theorem 4.7
(since J(δ) < δ for every δ, 0 < δ < 1/2). But the result of Theorem 4.10 is
unconditional and does not rely on any unproven number-theoretic conjec-
ture, and is thus not “dominated” by that of Theorem 4.7.

4.4 Super-constant List Size at Johnson Radius

In this section, we will prove Theorem 4.5. The results of this section are
based on the ideas of Justesen and Hφholdt [113], though we fill in several
details in their proofs and also need some new ideas to prove our claim. In
particular, Justesen and Hφholdt state their results only for large alphabets
while we are interested in results for binary codes. In fact their results hold
for Maximum Distance Separable (MDS) codes which are [N, K, D] linear
codes whose dimension and minimum distance satisfy the optimal trade-off
K + D = N + 1 (i.e., they match the Singleton Bound). Such a code is
characterized by an N × K generator matrix which has the property that
every K ×K submatrix has rank K (cf. [132, Chap. 11]).

4.4.1 The Basic Construction

The following lemma is at the core of the results of this section. It is proved
using the basic construction scheme in [113]. However, we need an explicit
upper bound on the size of the field over which the code is defined, while
[113] were content in getting MDS codes over some large enough field. Con-
sequently, we have to be more careful in our proof, specifically when proving
a certain linear algebraic claim from [113], because we need an explicit upper
bound on the field size. We isolate the necessary linear-algebraic fact and
prove it as a separate technical lemma in Section 4.4.3.

Lemma 4.11. For all large enough integers m, s with 2 < s < m + 1, and
for all sufficiently large f , there exists a linear MDS code C over GF(2f)
of blocklength N =

(
m+1

s

)
, relative distance δ = 1 − s(s−1)

m(m+1) , and dimension

4.4 Super-constant List Size at Johnson Radius 51

(1−δ)N +1, with the property that there exists a Hamming ball of radius τN
where τ = 1− s/(m+1) containing at least (m+1) codewords of C. In other
words, C is not (τN, m)-list decodable. Moreover, it suffices if f ≥ Ω(N) for
the above claim, so that an MDS code with the stated properties exists over
a field of size at most 2O(N).

Proof: The code construction and the configuration of (m + 1) codewords
that lie in a small Hamming ball will be based on a certain “combinatorial
design”. Since the design used is a trivial one, we simply present the actual
construction without developing or using any design-theoretic notation or
terminology.

0

0

c1

c2

c3

c4

0

0

0

0

0

0

1 1 1

1

1 1

1

11

1

1

1

0

0 0

0

Fig. 4.1. The construction for m = 4, s = 3 and N = 10. We assume a lexicographic
ordering of the 3-element subsets of {0, 1, 2, 3, 4}, so that B1 = {0, 1, 2}, B2 =
{0, 1, 3}, B3 = {0, 1, 4, }, B4 = {0, 2, 3}, and so on.

Let 2 < s < m + 1 and N =
(
m+1

s

)
. Let B1, B2, . . . , BN be the set of

N s-elements subsets of {0, 1, 2, . . . , m}, ordered so that the r =
(

m
s−1

)
sets

containing 0 are the first r sets B1, B2, . . . , Br. For j = 0, 1, . . . , m, define the
N -dimensional vector cj as follows: c0 = 0 and for 1 ≤ j ≤ m and 1 ≤ l ≤ N ,

cj(l) =
{

0 if j ∈ Bl and 0 ∈ Bl,
1 if j ∈ Bl and 0 /∈ Bl,

(4.2)

Figure 4.1 illustrates the construction of the cj’s for the case m = 4 and
s = 3; in this case N = 10 so that each vector has 10 coordinates out of
which

(
m

s−1

)
= 6 are filled with 0’s or 1’s. The values of the cj’s in the

remaining positions (not fixed by (4.2) above) will be suitably picked elements
from GF(2f) \ {0, 1}, no element being used more than once. Here f is any
sufficiently large integer. The exact choice of f that will suffice and the choice
of elements at the remaining positions will be described shortly.

Define δ = (1− s(s−1)
m(m+1)). Now, for any pair of elements out of {0, 1, . . . , m},

the number of sets Bi which contain both of them is precisely
(
m−1
s−2

)
. Using

52 4 Limits to List Decodability

this fact, it is follows that the Hamming weight of each cj, 1 ≤ j ≤ m, as
well as the Hamming distance Δ(ci, cj) between ci and cj for 1 ≤ i < j ≤ m,
all equal

D
def=

(
m + 1

s

)
−
(

m− 1
s− 2

)
= N

(
1− s(s− 1)

m(m + 1)

)
= δN . (4.3)

Our goal will be to realize an [N, K, D] MDS code with K = N −D + 1
that contains all the cj’s, 0 ≤ j ≤ m + 1, as codewords. Furthermore all
these (m+1) codewords will lie in a Hamming ball, say Γ , of radius E = τN
where τ = 1− s

m+1 . Together, these will imply the statement of the lemma.
The latter of the above goals is easier to meet, while the former requires
some work. Therefore, we first specify the center x = 〈x1, x2, . . . , xN 〉 of the
Hamming ball Γ . This is defined as:

xl =
{

0 for 1 ≤ l ≤ r
1 for r < l ≤ N .

(Recall that r =
(

m
s−1

)
= sN

m+1 is the number of Bi’s that contain 0.) It is
clear that Hamming distance between x and c0 = 0 is

Δ(x, c0) = N − r = N
(
1− s

m + 1

)
= τN .

For j ≥ 1, cj has a 0-entry in
(
m−1
s−2

)
of the first r entries (corresponding to

s-sets that contain both 0 and j) and a 1-entry in
(
m−1
s−1

)
of the last (N − r)

entries (corresponding to s-sets that contain j but not 0). Hence we have

Δ(x, cj)= N−
((m− 1

s− 2

)
+
(

m− 1
s− 1

))
= N−

(
m

s− 1

)
=
(
1− s

m + 1

)
N = τN .

Thus, we have all the m + 1 “codewords” cj, 0 ≤ j ≤ m, in a Hamming ball
of radius τN .

It remains to realize the strings c1, . . . , cm as codewords in an [N, K =
N − D + 1, D] MDS code over a sufficiently large field F = GF(2f). Note
that c0 = 0 is always a member of any linear code and hence we have to only
worry about the cj’s, for 1 ≤ j ≤ m. We have quite a bit of flexibility in filling
out the entries of the cj’s in positions other than those already filled with
0s and 1s. We would like to show that this allows us to fill in the remaining
positions with distinct entries so that the cj’s can be realized as codewords
in an [N, K, D] MDS code.

To construct this MDS code, we will construct an N ×K matrix G over
a large enough finite field F = GF(2f) of such that every K ×K submatrix
of G has full rank. The linear code defined by such a generator matrix G is
MDS, and this will be our promised MDS code.3 In addition we will prove

3The one sentence proof of this is as follows. If there exists a non-zero codeword
of weight at most (N − K), and which has 0’s in, say, the first K positions, then
the first K rows of G must satisfy a non-trivial linearly dependence, contradicting
the fact that the K × K submatrix defined by the first K rows of G has rank K.

4.4 Super-constant List Size at Johnson Radius 53

that there exists a way to fill in the entries other than 0, 1 in cj, 1 ≤ j ≤ m,
so that the first m columns of G are c1, . . . , cm. We will then have the desired
MDS code which contains the cj’s as codewords (since the columns of G are
certainly codewords of the code defined with generator matrix G).

To do this we take a two-step approach. In the first step we prove that
for all large enough fields F (|F| = 2Ω(N) suffices), it is possible to fill in the
missing entries of the cj’s using distinct elements from F \ {0, 1}, such that
the N ×m matrix H with m columns c1, c2, . . . , cm has the property that
every K ×m submatrix has rank m. The details of this step are somewhat
tedious and are explained in a separate technical “linear- algebraic” lemma
(Lemma 4.14), whose statement and proof we defer to the end of this section
(specifically, to Section 4.4.3). In the second step, we show that provided the
field F is large enough (again |F| = 2Ω(N) suffices), one can add a further
(K −m) columns to H to get a matrix G, so that every K ×K submatrix of
G has rank K. This matrix G will be the final matrix which is the generator
matrix of the desired MDS code. The second step is easy to establish. In
fact, filling the remaining (K − m) columns with random entries from F

works with high probability. Indeed, the number of K × K submatrices to
consider is

(
N
K

) ≤ 2N . Fix one such submatrix, say M . We know that its
first m columns are linearly independent (this follows from the property of
the matrix H guaranteed by the first step). Suppose they span a space W
of dimension m. The probability that for a random choice of the remaining
entries, the (m+1)’th column lies in W is at most q−(K−m) where q = |F|. In
general the probability that the i’th column does not increase the dimension
of the column span is at most q−(K−i+1), for m < i ≤ K. By a union bound,
the probability that M has rank less than K is at most

K∑
i=m+1

q−(K−i+1) ≤ 2/q ,

for q ≥ 2. By a union bound over all K×K submatrices, the probability that
G has some K ×K submatrix of rank less than K is at most 2N · (2/q) < 1
provided q = |F| = 2Ω(N). In particular, this implies that there exists an
N ×K matrix with entries in F that defines an MDS code. The proof is thus
complete modulo Lemma 4.14 which we state and prove in Section 4.4.3. �

Lemma 4.12. For all ε > 0 and ∀ δ, 0 < δ < 1 there exist infinitely many
N for which the following holds. There exists an [N, K, D]Q linear code CN

with D ≥ δN and Q = 2O(N) with the property that there exists a Hamming
ball in [Q]N of radius E = (1−√1− δ − ε)N that has at least lg N codewords
of CN .

Proof: The idea is to use the codes guaranteed by Lemma 4.11 for infinitely
many pairs m, s. Note that as m and s tend to infinity the relative radius of
the ball τ = 1− s/(m + 1) and relative distance δ = 1− s(s− 1)/(m(m + 1))

54 4 Limits to List Decodability

of the code roughly satisfy τ � 1 − √
1− δ. This essentially gives us the

claimed result, and we just need to account for the error due to integrality
constraints.

Fix δ > 0 and ε > 0. For any m such that m > 2/ε, it is easy to see that
there exists an s, 2 < s < (m + 1), for which

δ ≤ 1− s(s− 1)
m(m + 1)

≤ δ + ε . (4.4)

Consider the code C for this choice of m, s guaranteed by Lemma 4.11. The
blocklength of C equals N =

(
m+1

s

)
. Now, since s ≤ m + 1, we have s

m+1 ≥√
s(s−1)

m(m+1) , and hence

τ = 1− s

m + 1
≤ 1−

√
s(s− 1)

m(m + 1)
≤ 1−√

1− δ − ε

(the last step above follows using Equation (4.4)). Thus there are at least m+1
codewords of C in a Hamming ball of radius (1−√

1− δ − ε)N . Since N ≤
2m+1, we get at least lg N codewords in a ball of radius (1−√

1− δ − ε)N ,
as desired. �

With Lemma 4.12 in place, proving the main result of this section, namely
that Lconst(δ) = (1 −√

1− 2δ)/2, is fairly straightforward.

Proof of Theorem 4.5: The proof uses the idea of code concatenation and
the reader might want to recall this notion from Chapter 2. Concatenate
the [N, K, D]Q code CN from Lemma 4.12 with the binary Hadamard code
of dimension lg Q and blocklength Q to obtain the concatenated code C̃.
The blocklength of C̃ is then n = NQ = N · 2O(N). The relative distance
of C̃ is at least δ′ = δ/2. Let x = 〈x1, x2, . . . , xN 〉 ∈ [Q]N be such that
|B(x, E) ∩CN | ≥ lg N , where E = (1−√1− δ − ε)N . Define y = Had(x1) ◦
Had(x2) · · ·Had(xN). Since every two distinct codewords of the Hadamard
code differ in a fraction 1/2 of positions, it is easy to see that

|B(y, EQ/2) ∩ C̃| ≥ lg N = Ω(lg lg n) .

Thus there are super-constant number of codewords in a ball of radius EQ/2.
Now

EQ/2
NQ

=
E

2N
=

(1−√
1− δ − ε)
2

=
(1−√

1− 2δ′ − ε)
2

,

and since δ(C̃) ≥ δ′, we get that there exists a code family C with
a super-constant number of codewords in a ball of relative radius
(1 −√

1− 2δ(C)− ε)/2. Since ε > 0 was arbitrary, we get that Lconst(δ) =
(1−√

1− 2δ)/2, as desired. �

4.4 Super-constant List Size at Johnson Radius 55

The lemma below follows from the above proof. Its rather special form
might be mysterious now, but it will only be used in the code constructions
of Section 4.7, and is not necessary for the results of this section. We record
it here since its proof follows using the code construction and ideas from the
proofs of Lemmas 4.11 and 4.12. The main features of it that will be useful
in Section 4.7 are that its dimension can be a multiple of any desired integer
k, and that it can have several codewords within a ball of radius close to the
Johnson bound on list decoding radius. The code will be used in Section 4.7
as an inner code in a concatenation scheme with outer Reed-Solomon code
to obtain a code with super-polynomial number of codewords at close to the
Johnson radius, modulo some technical conditions.

Lemma 4.13. For all ε > 0, the following holds. For all large enough integers
k and every δ, 0 < δ < 1/2, there exist an integer b ≤ 2O(2k), and a binary
linear code Cbin

k,δ that has the following properties:

(i) It has dimension kb, blocklength n ≤ 2O(k
√

b), and relative distance δ.
(ii) There exists a Hamming ball of radius (1−√1− 2δ − ε)n which contains

at least 2k codewords of Cbin
k,δ .

Proof Sketch: Let us use Lemma 4.11 with the choice m = 2k−1. This gives
us an MDS code of blocklength n0 ≤ 22k

, relative distance 2δ and dimension
b0 = (1 − 2δ)n0 + 1 over a field GF(2kn0) (since k is a sufficiently large
integer, such a code exists over GF(2kn0)). Now, arguing as in Lemma 4.12,
the code will contain at least 2k codewords in a Hamming ball of radius
(1−√1− 2δ − ε)n0. We then concatenate this code with a binary Hadamard
code of dimension kn0. The relative distance of the binary concatenated
code will be δ, its dimension kb where b

def= b0n0, and its blocklength will
be n = n02kn0 ≤ 2O(k

√
b) (since b = b0n0 and b0 = Θ(n0)). Note that

b ≤ n2
0 ≤ 2O(2k). Furthermore, as argued in the proof of Theorem 4.5, due

to the corresponding property of the MDS code, the concatenated code will
contain at least 2k codewords in a ball of radius 1

2 (1 − √
1− 2δ − ε)n, as

claimed. �

4.4.2 Related Constructions

The paper of Justesen and Hφholdt [113] also gives a construction of Reed-
Solomon codes of rate r (say, over GF(2m)) with n = 2m−1 codewords at the
Johnson radius (1−√r)n (where n is the blocklength of the code), for certain
values of the rate r.4 As in the above construction, we can then concatenate

4This construction is also of interest to the problem of list decoding Reed-
Solomon codes, as it provides some evidence to the “tightness” of the Johnson
radius for list decoding with constant-sized lists for Reed-Solomon codes. More on
this later when we discuss Reed-Solomon decoding in Chapter 6.

56 4 Limits to List Decodability

such a Reed-Solomon code with a binary Hadamard code of dimension m to
get a linear code of blocklength N with about lg N codewords at the Johnson
radius. In fact the resulting proof is simpler than that of Lemmas 4.11 and
4.12. However, such a result will only apply for certain values of the relative
distance (since the necessary Reed-Solomon code from [113] is only shown to
exist for certain values of the rate/relative distance). Since our focus was on
obtaining a result for the entire range 0 < δ < 1/2 for the relative distance,
we had to go through the more complicated construction of Lemma 4.11.

More recently, Justesen [112] has shown that certain other families of
cyclic codes also have about n codewords at the Johnson radius. But once
again these results only apply to a certain set of values of the relative distance,
and it is not clear how to extend them for every value of the relative distance.

4.4.3 The Technical “Linear-Algebraic” Lemma

We now state and prove the technical lemma used in the proof of Lemma 4.11.
The proof is not difficult, but is somewhat long. Therefore, we deliberately
moved it to the end of this section so that only the most persevering of readers
will need to read the proof. Actually, we believe that the lemma should have
a significantly simpler and shorter proof, and we encourage the reader to try
and find an alternate proof.

Lemma 4.14. For the vectors c1, c2, . . . , cm partially defined as in Equation
(4.2), there is a way to fill in the remaining entries using distinct field ele-
ments from F \ {0, 1}, for any field F that satisfies |F| ≥ 2Ω(N), such that the
following holds. The N × m matrix H with columns c1, c2, . . . , cm has the
property that every K ×m submatrix of H has rank m over the field F.

Proof: The particular proof method used here was suggested to us by Madhu
Sudan. Consider the matrix H with columns c1, . . . , cm and consider filling
each of the as yet unfilled entry of the cj’s with a different “indeterminate”.
Let us label these indeterminates x1, x2, . . . , xT , where T ≤ mN . We will
then prove that there is a setting of the indeterminates for which each of the
K ×m submatrices has rank m.

Let M be any K ×m submatrix of H . We will prove that there exists an
m×m submatrix M ′ of M whose determinant is non-zero as a polynomial in
the xi’s. Note that each such m×m determinant is a multilinear polynomial in
the xi’s. Let us give this determinant polynomial a label, say D(M). Once we
establish this fact, we can simply consider the polynomial, say P , which is the
product all such determinant polynomials D(M) (over all K×m submatrices
M). Any setting of distinct values to the xi’s which makes P evaluate to a
non-zero element would then imply a setting of the xi’s for which every
K ×K submatrix has some m×m submatrix with non-zero determinant, or
in other words has rank m, as desired. Now P being a product of non-zero
polynomials, is itself non-zero. Furthermore, P is a product of

(
N
K

)
multilinear

4.4 Super-constant List Size at Johnson Radius 57

polynomials, and hence the degree of P in each variable is at most
(
N
K

) ≤ 2N .
Thus provided |F| ≥ 2N + T , one can set arbitrary distinct values to all
but one indeterminate involved in P , say to all but x1, to give a univariate
polynomial P̃ of degree at most 2N in x1. P̃ has at most 2N roots over F,
and since |F| ≥ 2N + T , there must exist a value in F outside the roots of P̃
and the at most (T − 1) values given to the indeterminates other than x1.
Giving x1 such a value implies that P is non-zero for such a setting of the
xi’s. Thus, if |F| ≥ 2Ω(N), there exists a setting of distinct values to the xi’s
which makes P evaluate to a non-zero element.

It remains to prove that every K × m submatrix of H has a m × m
submatrix whose determinant is a non-zero multilinear polynomial in the
xi’s. Since H already has 0’s and 1’s filled in at some positions, this fact is
somewhat tricky to prove. It would be good to recollect the details of the
design construction from Lemma 4.11 and specifically the pattern of 0’s and
1’s that are already filled in the matrix H . In particular the following easily
verified facts will be handy later on in the proof:

Fact 1 Every column of H has exactly
(

m−1
s−2

)
= (K − 1) zeroes, and

(
m−1
s−1

)
ones.

Fact 2 No column has 0s or 1s filled in more than
(
m−2
s−3

)
rows out of the

rows that have 0s filled in some other column (this is because the
sets corresponding to all such rows must contain 3 fixed elements out
of {0, 1, . . . , m}, and there are clearly

(
m−2
s−3

)
such s-element subsets of

{0, 1, . . . , m}).
Fact 3 For every two columns, the number of rows in which they both have

entries filled in is at most
(
m−1
s−2

)
= K − 1.

Now, consider a fixed K×m submatrix, say M , of H , indexed by a subset
R ⊆ [N] of K rows of H . We want to prove that M has a m×m submatrix
M ′ whose determinant is a non-zero polynomial in the xi’s. Our “rough”
goal is to prove that one can identify a subset S ⊂ R of size m such that for
each column j, 1 ≤ j ≤ m, there is a different row sj ∈ S such that entry in
the sj ’th row and j’th column is an indeterminate, say xij . Loosely, we call
such an S a “matching set”. (The reason for this terminology will be clear
shortly.) The determinant of the m × m submatrix defined by the rows in
such a subset S is then clearly non-zero, as it contains the term xi1xi2 · · ·xim ,
which cannot be canceled by any other term.

We do not always succeed in finding such a matching set, but we al-
most do, and in any case will always be able to conclude that the concerned
determinant is a non-zero polynomial. The term “matching set” should be
suggestive, as we will find a good set S of rows by finding a matching be-
tween the m columns and a subset of the K rows of M in a suitably defined
graph. We will prove such a matching exists by appealing to Hall’s theorem.5

5Hall’s theorem (see any standard graph theory text, eg., [94]) is a classic result
that gives a necessary and sufficient condition for a bipartite graph B = (X, Y, E)

58 4 Limits to List Decodability

The relevant bipartite graph, call it B, is defined as follows. It has one side
associated with the m columns of H and the other side with set of rows R.
There is an edge between j ∈ [m] and � ∈ R, if the entry in row number �
and column number j is an indeterminate. We first claim the following:

Claim A. For any subset T ⊆ [m] with |T | = p ≥ 3, the neighborhood of T
in the above bipartite graph B, denoted NB(T), contains at least p elements.

Indeed, if a row � ∈ R is not adjacent to any element of T , then it means
that the s-element subset of {0, 1, . . . , m} that corresponds to row � contains
T as a subset. The number of such s-element subsets is at most

(
m+1−p

s−p

)
.

Hence if p > s, the neighborhood of T includes all rows in R, so assume
p ≤ s. Now

K =
(

m− 1
s− 2

)
+ 1 >

(m− 1)(m− 2) · · · (m− p + 2)
(s− 2)(s− 3) · · · (s− p + 1)

(
m + 1− p

s− p

)
.

If m is large enough, and p ≥ 3, it is now easily verified that the number of
rows in R adjacent to some element in T is at least p, as claimed.

The above claim states that Hall’s condition is satisfied for subsets of [m]
of size 3 or more. Hence in the case when it is also satisfied for subsets of [m]
of size at most 2, we will have a desired matching of size m in the graph B.
The m ×m submatrix of M indexed by the rows used in the matching will
then have non-zero determinant.

It remains to deal with the case when Hall’s condition is violated for
some subset of [m] of size at most 2. In such a situation we will not be able
to find a matching for all m columns, but will find a matching at least (m−2)
columns and then carefully pick two more rows so that we can still argue that
the concerned determinant is non-zero. This involves a somewhat tedious case
analysis.

If Hall’s condition is violated for some subset of size at most 2, then there
must exist some a ∈ [m] such that |NB(a)| ≤ 1. This means that in the matrix
H , the column number a has either 0s or 1s already filled in at (K − 1) or
more of the K rows of R. Assume for definiteness that it has 0s or 1s filled
in the first (K − 1) rows of R. We distinguish two cases:

Case 1: Column a has only 0s in the first (K − 1) rows of R.
In this case, a must have either a 1 or an indeterminate in the K’th row.

This follows from Fact 1 that we recalled about the pattern of 0s and 1s in
H . Furthermore, by Fact 2, all columns other than a can have at most

(
m−2
s−3

)
entries filled with a 0 or 1, among the first (K − 1) rows of R. For large
enough m, we have

to have a matching that matches every vertex in X to a distinct vertex in Y (we are
assuming |X| ≤ |Y |, of course). The condition is that the neighborhood of every
subset T ⊆ X, NB(T) ⊆ Y , satisfies |NB(T)| ≥ |T |. This is clearly a necessary
condition, and Hall’s theorem states that it also sufficient. We will refer to the
condition “|NB(T)| ≥ |T | for all T ⊆ X” as Hall’s condition.

4.4 Super-constant List Size at Johnson Radius 59

(K − 1)−
(

m− 2
s− 3

)
=
(

m− 1
s− 2

)
−
(

m− 2
s− 3

)
≥ 2 ,

and therefore every column in [m] \ {a} has at least 2 neighbors among the
first (K − 1) rows of R. Together with Claim A, this implies that Hall’s
condition holds in the subgraph of B obtained by deleting the last row of
R and the column a. Therefore, there must exist a matching of the (m− 1)
columns other than a into a set R′ of m − 1 distinct rows (among the first
K − 1 rows of R). Let xi1 , . . . , xim−1 be the indeterminates at the m − 1
positions of H defined by this matching. Then, since column a must have
either a 1 or an indeterminate in the K’th row, the rows in R′ together with
the K’th row of R define an m×m submatrix whose determinant is non-zero.

Case 2: Column a has 0s and 1s filled in the first (K − 1) rows of R, and not
all these entries are 0s.
By permuting rows if necessary, assume that a has either a 1 or an indeter-
minate in the K’th row of R. In this situation, we further distinguish two
subcases:

Case 2.1: Each b ∈ [m] \ {a} has at least two neighbors in R, i.e., has 0s
and 1s filled in at most (K − 2) of the rows in R.

Once again, we claim that if this were the case, the subgraph of B obtained
by deleting the column a and the K’th row of R, obeys Hall’s condition.
Indeed the hypothesis implies that the condition holds for sets of size one,
since each b ∈ [m]\{a} has at least one neighbor among the first K−1 rows of
R. For subsets T of size p ≥ 2, we apply Claim A to T ∪{a} to conclude that
T ∪ {a} has at least p + 1 neighbors in R, and hence T at least p neighbors
among the first (K − 1) rows of R (since a is at best adjacent to the last row
of K).

Now as in Case 1, the rows corresponding to the matching of size (m− 1)
from this subgraph together with K’th row of R give us the necessary m×m
submatrix with non-zero determinant.

Case 2.2: There exists some other element b ∈ [m], b
= a, such that
column number b has 0s and 1s filled in the first (K − 1) rows of R.

We can assume that b also does not have all 0’s in the first (K − 1) rows
of R, as otherwise we could apply the argument of Case 1 with b instead of
a.

Now, at least one of a, b must have an indeterminate in the K’th row of
R. This follows from Fact 3. Assume, without loss of generality, that a has
an indeterminate, say xa∗ , in the K’th row of R. Further, by permuting the
first (K−1) rows of R if necessary, we may assume without loss of generality
that the (K − 1)’th row of R has entry 1 in column b (this is possible since
column b does not have all 0’s filled in these rows).

Consider the subgraph of B obtained by deleting the last two rows of R
and the columns a, b. Using Claim A, it is easily checked that this subgraph
satisfies Hall’s condition. Therefore it has a matching which matches each

60 4 Limits to List Decodability

of the (m − 2) columns other than a, b to distinct rows where they have an
indeterminate. Let these indeterminates be xr1 , xr2 , . . . , xrm−2 . Now consider
the m × m submatrix M ′ indexed by the (m − 2) rows from the matching
together with the last two rows of R. Since a has an indeterminate xi∗ in
the last row of R, and b has a 1 in the second last row of R, it follows that
the determinant of M ′ has a term xa∗xr1 · · ·xrm−2 which cannot be canceled
by any other term in the expansion of the determinant of M ′. Therefore the
determinant of M ′, as a multilinear polynomial, is non-zero, as we desired to
show. This completes the proof in Case 2.2 as well. �

4.5 Super-polynomial List Size Below Minimum
Distance

We will now establish Theorem 4.10 demonstrating a super-polynomial num-
ber of codewords in a Hamming ball of relative radius less than the relative
distance. The proof is related to the work of Dumer, Micciancio, and Su-
dan [44] — the main difference will be the use of algebraic-geometric codes
that beat the Gilbert-Varshamov bound as the outer code instead of Reed-
Solomon codes that were used in [44].

4.5.1 Proof of Theorem 4.10

For every δ, 0 < δ < 1/2, we need to construct a code family of relative dis-
tance at least δ, together with a received word v that has super-polynomially
many codewords that differ from v in at most a fraction ρ of positions, for
some ρ = ρ(δ) < δ. We will first specify the code (and will do so explicitly),
and will later prove the existence (non-explicitly) of such a center v using
the probabilistic method.

The code family we use will be obtained by concatenating algebraic-
geometric (AG) codes with very good trade-off between rate and relative
distance, in particular better than the Gilbert-Varshamov bound achieved
by random codes, with Hadamard codes as the inner codes. The specific AG-
codes will be based on a construction due to Garcia and Stichtenoth [65, 167]
that meet the so-called Drinfeld-Vlădut bound, which is the best rate vs.
relative distance trade-off possible for codes based on algebraic curves. For
every a ≥ 1, these give linear codes over GF(22a) with relative distance at
least γ, for any desired γ in the range 0 < γ < 1− 1

2a−1 , with rate at least

RDV(γ) = 1− 1
2a − 1

− γ . (4.5)

More details on these codes appear in Section 6.3.9 in the chapter on list
decoding AG-codes.

4.5 Super-polynomial List Size Below Minimum Distance 61

Recall that the Gilbert-Varshamov bound over an alphabet of size 22a

equals

RGV(γ) = 1−H22a(γ) = 1− γ log(22a − 1)− γ log γ − (1 − γ) log(1− γ)
log 22a

.

The following lemma states that such AG-codes in fact perform better than
random codes. We have not attempted to optimize the parameters in below
statement (it is known that the Drinfeld-Vlădut bound beats the GV bound
for alphabet size bigger than 49).

Lemma 4.15. Suppose a ≥ 5 and γ, 0 < γ < 1 − 1
2a−1 , satisfies H(γ) ≥

6a
2a−1 . Then

RDV(γ)−RGV(γ) = H22a(γ) + RDV(γ)− 1 ≥ 1
2a − 1

. (4.6)

Proof: We have

RDV(γ)−RGV(γ) =
γ log(22a − 1)

2a
+

H(γ)
2a

− γ − 1
2a − 1

= γ log(1− 2−2a) +
H(γ)
2a

− 1
2a − 1

≥ −γ21−2a +
H(γ)
2a

− 1
2a − 1

(using log(1− x) ≥ −2x for x ≤ 1/4)

≥ 1
2a − 1

where in the last step we used H(γ)/2a ≥ 3/(2a − 1). �
Denote q = 22a for notational convenience. For γ satisfying the condition

of Lemma 4.15, define ρ, 0 < ρ < γ such that

Hq(ρ) = Hq(γ)− 2−a .

Let C be an AG-code of blocklength n from the family of codes attaining the
trade-off (4.5). Pick a random center v ∈ Fn

q . Then the expected number of
codewords of within distance ρn of v equals

|B(v, ρn)| · |C|
qn

≥ qHq(ρ)n−o(n)qRDV(γ)nq−n

≥ q(Hq(γ)+RDV(γ)−1)nq−n/2a

q−o(n)

≥ qn/(2a−1)q−n/2a

q−o(n) (using Lemma 4.15)
≥ qn/4a

,

which is exponential in the blocklength. Therefore, there must exist r ∈ Fn
q

such that |B(r, ρn) ∩ C| is exponential in n.

62 4 Limits to List Decodability

So far, we have demonstrated a super-polynomial number of codewords in
a ball of radius less than the relative distance in codes over large alphabets.
Moreover, this works for the entire range of relative distance 0 < γ < 1 by
picking a large enough. To see this, note that if γa, 0 < γa < 1/2 is such that
H(γa) = 6a/(2a − 1), then γa → 0 as a → ∞, and the construction above
works for the range of relative distance γa < γ < min

{
1− γa, 1− 1

2a−1

}
.

Now, to prove that Lpoly(δ) < δ for binary codes for every δ, 0 < δ < 1/2,
we will concatenate the AG-code C discussed above with the choice γ = 2δ
and a large enough so that γa < min{γ, 1 − γ}, with a Hadamard code of
dimension 2a. The relative distance of the resulting binary linear code is
clearly at least δ. The “center” w of the ball with many codewords from the
concatenated code will be obtained by encoding the center r obtained above
for the AG-code C by the Hadamard code. Formally, the i’th block of w will
be set to the Hadamard encoding of the i’th symbol of r. Clearly, if a codeword
c ∈ C is within distance ρn of r, then the codeword of the concatenated code
obtained by encoding the symbols of c by the Hadamard code will differ from
w in at most a fraction ρ/2 of positions. Since ρ/2 < γ/2 = δ, we get a
super-polynomial number of codewords of the binary concatenated code in a
ball of relative radius less than δ. This demonstrates that Lpoly(δ) < δ, and
Theorem 4.10 is thus proved.

4.6 Explicit Constructions with Polynomial-Sized Lists

In this section, we will prove Theorem 4.9 demonstrating an explicit construc-
tion of a code and a center with more than nc codewords in a ball of radius
less than the distance for every c ≥ 1. Explicit constructions of such “bad list
decoding” configurations are interesting in their own right, and also because
if sufficiently strong (i.e., if we can produce exponentially many codewords
in a small Hamming ball with an explicit center) they will lead to derandom-
ization of the hardness result for approximating the minimum distance of a
code [44].

We will first prove the upper bound on the function Lpoly(δ) claimed in
Theorem 4.8 for δ = 1

2 · (1 − o(1)). A modification of this proof will then
yield the proof of Theorem 4.9. The proof of Theorem 4.7 under the Artin
conjecture in the next section was inspired by the proofs in this section. Hence
the reader wishing to read that section should at least skim through the ideas
used in proving Theorems 4.8 and 4.9.

We first review the basic definitions and concepts from (Discrete) Fourier
analysis that will be used in some of our proofs.

4.6.1 Fourier Analysis and Group Characters

For this section, it will be convenient to represent Boolean values by {1,−1}
with 1 standing for False and −1 for True. This has the nice feature that

4.6 Explicit Constructions with Polynomial-Sized Lists 63

Xor just becomes multiplication. Thus a binary code of blocklength m will be
a subset of {1,−1}m. There are 2t linear functions χα : {0, 1}t → {1,−1} on
t-variables, one for each α ∈ {0, 1}t. The function χα is defined by χα(x) =
(−1)α·x = (−1)

∑
αixi . Fixing some representation of the field GF(2t) as

elements of {0, 1}t, the linear functions χα are the additive characters of the
field GF(2t), and can also be indexed by elements α ∈ GF(2t). We will do so
in the rest of the paper. We also have, for each y ∈ GF(2t),

∑
α χα(y) equals

0 if y
= 0 and equals 2t if y = 0, where the summation is over all α ∈ GF(2t).
We can define an inner product 〈f, g〉 for functions f, g : GF(2t) → R

as 〈f, g〉 = 2−t
∑

x f(x)g(x). We call this inner product the normalized in-
ner product, in contrast to the unnormalized inner product

∑
x f(x)g(x).

The linear functions form an orthonormal basis for the space of real-valued
functions on GF(2t) with respect to the normalized inner product. Thus ev-
ery real-valued function on GF(2t), and in particular every Boolean function
f : GF(2t) → {1,−1} can be written in terms of the χα’s as:

f(x) =
∑

α∈GF(2t)

f̂αχα(x) . (4.7)

The coefficient fα is called the Fourier coefficient of f with respect to α
and satisfies f̂α = 〈f, χα〉 = 2−t

∑
x f(x)χα(x). If we define the normal-

ized distance between functions f, g as δ(f, g) = Pr
x

[
f(x)
= g(x)

]
, then

f̂α = 1−2δ(f, χα). The Fourier coefficients of a Boolean function also satisfy
Plancherel’s identity

∑
α f̂2

α = 1.

We now define the the Hadamard code in the ±1 convention to denote binary
symbols:
Hadamard code: For any integer t, the binary Hadamard code Hadt of
dimension t, encodes t bits (or equivalently elements of GF(2t)), into elements
in {1,−1}2t

as follows: For any x ∈ GF(2t), Hadt(x) = 〈χα(x)〉α∈GF(2t).

4.6.2 Idea Behind the Construction

Our goal is to construct codes with large minimum distance with a large
number of codewords in a ball of desired radius. The specific codes we con-
struct are obtained by concatenating an outer Reed-Solomon code over the
field F = GF(2t) with the Hadamard code Hadt of blocklength 2t and di-
mension t. Thus the messages of this code will be degree � polynomials over
GF(2t) for some �, and such a polynomial P is mapped into the codeword
〈Hadt(P (z1)), . . . ,Hadt(P (z2t))〉 where z1, z2, . . . , z2t is some enumeration of
the elements in GF(2t).

Let n = 2t. It is easy to see that this code has blocklength 22t and
minimum distance 1

2

(
1− �

n

)
22t. If � = (1− 2δ)n, then the relative minimum

distance is δ, and for future reference we denote this code by RS-Hadt(δ).

64 4 Limits to List Decodability

To construct the received word (which will be the center of the Hamming
ball with a lot of codewords), consider the following. Suppose we could pick
an appropriate subset S of GF(2t) and construct a Boolean function f :
GF(2t) → {1,−1} that has large Fourier coefficient f̂α with respect to α for
α ∈ S. Let v ∈ {1,−1}2t

be the 2t-dimensional vector consisting of the values
of f on GF(2t). The word v|F |, i.e., v repeated |F | times will be the received
word. Since f has large Fourier support on S, v|F | will have good agreement
with all codewords that correspond to messages (polynomials) P that satisfy
P (zi) ∈ S for many field elements zi. By picking for the set S a multiplicative
subgroup of GF(2t) of suitable size, we can ensure that there are several such
polynomials, and hence several codewords in the concatenated code that have
good agreement with v|F |.

The main technical component of our construction and analysis is the fol-
lowing theorem which asserts the existence of Boolean functions f with large
support on subgroups S of GF(2t). We will defer the proof of the theorem to
Section 4.6.5, and first use it to prove Theorems 4.8 and 4.9.

Theorem 4.16. There exist infinitely many integers s with the following
property: For infinitely many integers t, there exists an explicitly specified
multiplicative subgroup S of GF(2t) of size s such that the following holds:
For every β
= 0 in GF(2t) there exists a function f : GF(2t) → {1,−1} with∑

α∈β·S f̂α ≥
√

s
3 . (Here β · S denotes the coset {βx : x ∈ S} of S.)

Remarks: Our proof of the above theorem in fact gives the following addi-
tional features which we make use of in our applications of the theorem.

1. The integers s exists with good density; in particular for any integer
k ≥ 4, there exists an s, with k ≤ s < 3k, that satisfies the requirements
of Theorem 4.16.

2. We can also add the condition that there exist infinitely many t including
one that lies in the range s/2 ≤ t ≤ s, and the theorem still holds.

For any subset S ⊆ GF(2t), one can show that
∑

α∈S f̂α is at most |S|1/2

using Plancherel’s identity and Cauchy-Schwartz, and Theorem 4.16 shows
that we can achieve a sum of Ω(|S|1/2) infinitely often for appropriate mul-
tiplicative subgroups S.

4.6.3 Proof of Theorem 4.8

We now employ Theorem 4.16 to prove Theorem 4.8. We in fact prove the
following Lemma which clearly establishes Theorem 4.8.

Lemma 4.17. For every ε, 0 < ε < 1/2, there exist infinitely many integers t
such that the following holds: Let N = 22t. There exists an explicit vector r ∈
{1,−1}N and δ = 1

2

(
1 −Θ((log N)ε−1)

)
, such that the number of codewords

c of the code RS-Hadt(δ) with Δ(r, c) ≤ N
2

(
1 − (1 − 2δ)1/2+ε

)
is at least

NΩ(logε N).

4.6 Explicit Constructions with Polynomial-Sized Lists 65

Proof: Let s, t be any pair of integers guaranteed by Theorem 4.16 with t ≤
s ≤ 2t (we are using one of the remarks following Theorem 4.16 here). Let S
be a multiplicative subgroup of GF(2t) of size s and let f : GF(2t) → {1,−1}
a function guaranteed by Theorem 4.16 such that

∑
α∈S

f̂α ≥
√

s

3
. (4.8)

Let n = 2t, N = 22t and p = (n − 1)/s. Note that s = Θ(log N) since we
have t ≤ s ≤ 2t. Then S ∪ {0} consists of all elements in GF(2t) which are
p’th powers of some element of GF(2t).

We first fix the “received word” r. Let v ∈ {1,−1}n be the vector
〈f(x)〉x∈GF(2t) of all values of f . Then r = vn, i.e. the vector v repeated
n = 2t times, one for each position of the outer Reed-Solomon code.

Let δ be a parameter to be specified later and � = (1−2δ)n. Consider the
binary code C = RS-Hadt(δ) obtained by concatenating a Reed-Solomon
code of dimension � + 1 = (1 − 2δ)n + 1 over GF(2t) with Hadt. C has
blocklength N and minimum distance δN . We now want to exhibit several
codewords in C that are “close” to r. We do this by picking codewords in C
at random from some distribution and showing that the agreement with r is
“large” with good probability.

Let m = ��/p� and consider a message (degree � polynomial over GF(2t))
P of C which is of the form P (x) = R(x)p for a random polynomial R of
degree at most m over GF(2t). The Reed-Solomon encoding (b1, b2, . . . , bn)
of P satisfies bi ∈ S ∪ {0} for every i, 1 ≤ i ≤ n. It is easy to see that for
each i and each a ∈ S, we have Pr[bi = a] = p/n, and Pr[bi = 0] = 1/n.
Moreover, the choices of bi are pairwise independent.

Now, by definition of the Fourier coefficient, for each i, the Hadamard
codeword Hadt(bi) and the vector v we constructed above have an unnor-
malized inner product equal to n · f̂bi (or equivalently, agree on a fraction
1+f̂bi

2 of positions). For any i, 1 ≤ i ≤ n, the expected value of f̂bi satisfies

p

n

∑
α∈S

f̂α +
1
n

f̂0 ≥ (n− 1)
ns

∑
α∈S

f̂α − 1
n
≥ 1

s

∑
α∈S

f̂α − 2
n
≥ 1√

3s
− 2

n
, (4.9)

(the last inequality follows from Equation (4.8)). Let X denote the random
variable which is the unnormalized inner product of the codeword (encoding
the message R(x)p for a random polynomial R of degree at most m) with the
received vector r = vn. By linearity of expectation and using (4.9), we have

E[X] =
n∑

i=1

E[nf̂bi] ≥
N√
3s
− 2

√
N ≥ 1.1N√

4s
(4.10)

for large enough N (since s = Θ(log N)). Now, for each i, 1 ≤ i ≤ n, we have

66 4 Limits to List Decodability

E[f̂2
bi

] ≤ p

n

∑
α∈S∪{0}

f̂2
α ≤ 1/s .

Since the bi’s are evaluations of the polynomial R(x)p at the n field elements
for a random polynomial R, they are pairwise independent. Thus the variance
of the random variable X satisfies

Var(X) =
n∑

i=1

Var(nf̂bi) ≤
n∑

i=1

E[(nf̂bi)
2] ≤ n3

s
=

N3/2

s
. (4.11)

We now use Chebyshev’s inequality to prove that the inner product X is
greater than N/

√
4s with probability at least 1/2. Indeed

Pr[X ≤ N√
4s

] ≤ Pr[X −E[X] ≤ − N

10
√

4s
] ≤ Pr[|X −E[X]| ≥ N

10
√

4s
]

≤ 400s ·Var(X)
N2

≤ 400√
N

<
1
2

(for large enough N),

where we have used the lower bound on E[X] from Equation (4.10) and the
upper bound on Var(X) from Equation (4.11).

The total number of polynomials R(x) of degree at most m equals nm+1,
and by the above the encoding of at least 1/2 of these p’th powers R(x)p

differ from r in at most (1
2 − 1

2
√

4s
)N codeword positions. Since GF(2t)[x] is

an integral domain, no polynomial can be written as the p’th power of another
polynomial in more than p ways. Therefore, we get at least 1

2 · nm+1

p ≥ nm/2
distinct polynomials of degree at most mp whose encodings differ from r in
at most (1

2 − 1
2
√

4s
)N codeword positions.

We now pick parameters (namely m, δ) suitably to conclude the result.
Recall that s = Θ(log N). Picking m = ��/p� = sε, we have

(1− 2δ) =
�

n
= Θ

(�

ps

)
= Θ

(m

s

)
= Θ(sε−1) = Θ

(
(log N)ε−1

)
.

Thus the minimum distance δ (for our choice of m) satisfies δ = 1
2

(
1 −

Θ((log N)ε−1)
)
.

Also we have (1 − 2δ)1/2+ε � s(ε−1)(1/2+ε) ≤ (4s)−1/2 for large enough
N (since ε < 1/2). Thus there exist Ω(nm) = NΩ(logε N) codewords of
RS-Hadt(δ) all of which lie in a Hamming ball of radius N

2 (1−(1−2δ)1/2+ε).
Since Theorem 4.16 implies that there are infinitely many choices for t that
we could use, we also have infinitely many choices of blocklengths N available
for the above construction, and the proof is thus complete. �

4.6 Explicit Constructions with Polynomial-Sized Lists 67

4.6.4 Proof of Theorem 4.9

We now turn to obtaining upper bounds on Lpoly
c (δ) for a fixed constant c by

an explicit construction and proving Theorem 4.9. One way to achieve this
would be to pick m � 2c in the above proof, and then pick s � 2c/(1− 2δ)

and this would give (roughly) Lpoly
c (δ) ≤ 1

2

(
1 −

(
1−2δ
6c

)1/2)
. However this

upper bound is better than δ only for δ large enough, specifically for δ >
1
2 − 1

12c . We thus have to modify the construction of Lemma 4.17 in order to
prove Theorem 4.9. We prove the following lemma which will in turn imply
Theorem 4.9. Since our goal was only to establish Theorem 4.9, we have not
attempted to optimize the exact bounds in the lemma below.

Lemma 4.18. For every integer c ≥ 1 and every δ, 0 < δ < 1/2, there exists
an explicit family {Ci}i≥1 of binary linear codes of blocklength ni and relative
distance at least δ and an explicit sequence of centers {wi}i≥1, such that for
every i ≥ 1, the number of codewords of Ci that differ from wi in at most
hc(δ)ni positions is at least nc

i , where

hc(δ) = min
0≤α≤1/2−δ

{
(δ + α)

(
1− (

α

12(2c + 1)
)1/2

)}
. (4.12)

We first prove Theorem 4.9 using the above lemma.
Proof of Theorem 4.9: We want to prove hc(δ) < δ. Note that when
δ > 1

2 − 1
48(2c+1) , setting α = (1/2− δ) in Equation 4.12 gives

hc(δ) ≤ 1
2

(
1− (

1− 2δ

24(2c + 1)
)1/2

)
< δ .

When δ ≤ 1
2 − 1

48(2c+1) , setting α = δ2

48(2c+1) in Equation 4.12 (this is a valid
setting since it is less than 1/2−δ), we have hc(δ) ≤ δ+α−δ(α

12(2c+1))
1/2 < δ.

Thus we have hc(δ) < δ in either case. � (Theorem 4.9)

Proof of Lemma 4.18: We will closely follow the construction from the
proof of Lemma 4.17. Let 0 < δ < 1/2, 0 ≤ α ≤ (1/2 − δ), and c be given.
Define α′ = 2α and pick an integer s, 2(2c + 1)/α′ ≤ s < 6(2c + 1)/α′ such
that the conditions of Theorem 4.16 are met (we know such an s exists by
the first remark following Theorem 4.16). Let t be any integer for which a
subgroup S of GF(2t) exists as guaranteed by Theorem 4.16 (there are once
again infinitely many such values of t).

Now we describe the actual construction for a particular δ, α′, s, t. Let
n = 2t, N = n2 and p = (n− 1)/s. As in the proof of Lemma 4.17, the code
will again be RS-Hadt(δ) (the messages of the code will thus be polynomials
over GF(2t) of degree at most � = (1 − 2δ)n and the code has blocklength
N). The only change will be in the construction of the received word r. Now,
instead of using as received word the vector vn (recall that v was the table of

68 4 Limits to List Decodability

values of the Boolean function f with large Fourier support on a multiplicative
subgroup S of GF(2t)), we will set the first B = (�− α′n) = (1 − 2δ − α′)n
blocks of r to be all zeroes. The last (n−B) blocks of r will be vectors v(i),
B < i ≤ n, which will be explicitly specified shortly.

Let m = 2c + 1. We will consider the messages corresponding to poly-
nomials of the form P (x) = (x − z1) · · · (x − zB)R(x)p, where z1, . . . , zB are
the B elements of GF(n) that correspond to the first B positions of the
Reed-Solomon code, and R is a random degree m polynomial over GF(n).
Note that degree(P) = B + pm = � − α′n + n−1

s (2c + 1) ≤ � since we
picked s ≥ 2(2c + 1)/α′. By the choice of P , the Reed-Solomon encod-
ing (b1, b2, . . . , bn) of P , will satisfy bi = 0 for 1 ≤ i ≤ B, and for each
of the last (n − B) positions i, we will have bi ∈ Si ∪ {0} where Si is
a certain coset of S (recall that S is s-element multiplicative subgroup
of GF(2t) consisting of all the p’th powers). Specifically Si = βiS where
βi = (zi − z1) · · · (zi − zB). Note that we have an explicit description of the
Si’s. Now, for B < i ≤ n, define v(i) ∈ {1,−1}2t

to the value of the functions
f (i) where f (i) : GF(2t) → {1,−1} is a function with

∑
α∈Si

f̂
(i)
α ≥√

s/3 as
guaranteed by Theorem 4.16 (for the coset Si = βiS).

Now the final codeword corresponding to P will agree with r in the first
nB positions (since both begin with a string of nB zeroes). Using arguments
similar to those in the proof of Lemma 4.17, one can show that with proba-
bility at least 1/2, the codeword corresponding to the polynomial P differs
from r in at most

E = (n−B)n
(1

2
− 1

2
√

4s

)
= N(δ + α)

(
1− 1√

4s

)

positions. Arguing as in the proof of Theorem 4.8, we conclude that there
are at least 1

2nm codewords of RS-Hadt(δ) that lie within a ball of radius E
around r. Since N = n2, m = 2c+1 and s < 6(2c+1)/α′, we have ω(N c) code-
words in a Hamming ball of radius N(δ+α′/2)

(
1−

√
α′

24(2c+1)

)
, and recalling

that α′ = 2α, the claimed result follows. To conclude, we just reiterate that
by Theorem 4.16, for the picked value of s, there are infinitely many values
of t (and therefore the blocklength N) for which the code RS-Hadt(δ) has
the claimed properties. Thus we get an explicit family of codes and centers
with the requisite property, and the proof is complete. � (Lemma 4.18)

4.6.5 Proof of Theorem 4.16

The proof proceeds in several steps. We first prove the following lemma which
shows that if a subset S of GF(2t) satisfies a certain property, then there
exists a Boolean function f : GF(2t) → {1,−1} such that

∑
f̂α is large when

summed over α ∈ S.

4.6 Explicit Constructions with Polynomial-Sized Lists 69

Lemma 4.19. For any integer t, let S be an arbitrary subset of elements
of the field GF(2t) such that no four distinct elements of S sum up to 0.

Then there exists a function f : GF(2t) → {1,−1} with
∑

α∈S f̂α ≥
√

|S|
3 .

Moreover, f is explicitly specified given a description of the set S.

Proof: For any set S, the following simple claim identifies the “best” function
f for our purposes.

Claim: Define the function g : GF(2t) → R by g(x) =
∑

α∈S χα(x). Then
the maximum value of

∑
α∈S f̂α achieved by a boolean function f is exactly

2−t ·∑x |g(x)|.
Proof: Indeed

2t
∑
α∈S

f̂α =
∑

x,α∈S

f(x)χα(x) =
∑

x

f(x)
∑
α∈S

χα(x) =
∑

x

f(x)g(x) ≤
∑

x

|g(x)|

with equality holding when f is defined as f(x) = sign(g(x)). �
Thus the above claim “removes” the issue of searching for an f by presenting
the “best” choice of f , and one only needs to analyze the behavior of the
above character sum function g, and specifically prove a lower bound on∑

x |g(x)|.6
To get a lower bound on

∑
x |g(x)|, we employ Hölder’s inequality which

states that

∑
x

|h1(x)h2(x)| ≤
(∑

x

|h1(x)|p
)1/p (∑

x

|h2(x)|q
)1/q

,

for every positive p and q that satisfy 1
p + 1

q = 1. Applying this with h1(x) =
|g(x)|2/3, h2(x) = |g(x)|4/3, p = 3/2 and q = 3 gives

(∑
x

|g(x)|
)2/3 (∑

x

g(x)4
)1/3

≥
∑

x

g2(x). (4.13)

This inequality is also a consequence of log convexity of the power means (see
Hardy, Littlewood, Polya [95]; Theorem 18).

Now
∑

x g2(x) =
∑

α1,α2

∑
x χα1+α2(x) which equals |S| · 2t (the inner

sum equals 2t whenever α1 = α2 and 0 otherwise, and there are |S| pairs
(α1, α2) with α1 = α2). Note that this also follows from Plancherel’s identity.

Similarly
∑

x g4(x) =
∑

α1,α2,α3,α4∈S

∑
x χα1+α2+α3+α4(x) equals N4,S ·2t

where N4,S is the number of 4-tuples in (α1, α2, α3, α4) ∈ S4 that sum up to

6It can be shown that the representation of the field (as a vector space of di-
mension t over GF(2)) does not affect the value distribution of g, and thus we can
pick an arbitrary representation of the field, and the result will be the same.

70 4 Limits to List Decodability

0. But the property satisfied by S, no four distinct elements of S sum up to 0,
and hence the only such 4-tuples which sum up to 0 are those which have two
of the α’s equal. There are at most 3|S|2 such 4-tuples (α1, α2, α3, α4) with
two of the α’s equal. Hence N4,S ≤ 3|S|2, and hence

∑
x g4(x) ≤ 3|S|22t.

Plugging this into Equation (4.13) we get, when f(x) = sign(g(x)),

∑
α∈S

f̂α =
1
2t

∑
x

|g(x)| ≥
√

|S|3
3|S|2 =

√
|S|
3

�

Given the statement of Lemma 4.19, we next turn to constructing sub-
groups of GF(2t) with the property that no four (or fewer) distinct elements
of the subgroup sum up to 0. To construct such subgroups, we make use
of the following simple lemma about the existence of certain kinds of cyclic
codes. For completeness sake, we quickly review the necessary facts about
cyclic codes. A binary cyclic code of blocklength n is an ideal in the ring
R = Fq[X]/(Xn − 1). It is characterized by its generator polynomial g(X)
where g(X)|(Xn − 1). The codewords correspond to polynomials in R that
are multiples of g(X) (the n coefficients of each such polynomial form the
codeword symbols). A (binary) cyclic code is said to be maximal if its gen-
erator polynomial is irreducible over GF(2). A BCH code is a special kind of
cyclic code whose generator polynomial is defined to be the minimal polyno-
mial that has roots β, β2, . . . , βd−1. Here β is a primitive n’th root of unity
over GF(2), and d is the “designed distance” of the BCH code.

Lemma 4.20. Let k ≥ 4 be any integer. Then there exists an integer s in the
interval [k, 3k) such that a maximal binary BCH code of blocklength s and
minimum distance at least 5 exists, and can be constructed in time polynomial
in k.

Proof: Let s be an integer of the form 2f − 3 in the range [k, 3k) (such an
integer clearly exists). Let β be the primitive s’th root of unity over GF(2)
and let h be the minimal polynomial of β over GF(2). The polynomial h can
be constructed in time polynomial in s. Clearly, h(β2i

) = 0 for all i ≥ 1, and
hence h(β2) = h(β4) = 0. Since β is an s’th root of unity, we have βs = 1,
or in other words β2f

= β3. Therefore we also have h(β3) = 0. Now the
consider the cyclic code Ch of blocklength s with generator polynomial h. It
is clearly maximal since h, being the minimal polynomial of β, is irreducible
over GF(2). Also h(βi) = 0 for i = 1, 2, 3, 4. Using the BCH bound on
designed distance (see, for example, Section 6.6 of [193]), this implies that
the minimum distance of Ch is at least 5, as desired. �

Lemma 4.21. Let k ≥ 4 be any integer. Then there exists an integer s in
the interval [k, 3k) with the following property. For infinitely many integers
t, including some integer which lies in the range s/2 ≤ t ≤ s, there exists
an explicit multiplicative subgroup S of GF(2t) of size s such that no four

4.7 Super-polynomial List Sizes at the Johnson Bound 71

or fewer distinct elements of S sum up to 0 (in GF(2t)). Moreover, for any
non-zero β ∈ GF(2t) this property holds for the coset βS as well.

Proof: Given k, let k ≤ s < 3k be an integer for which there exists a binary
BCH code C of blocklength s as guaranteed by Lemma 4.20 exists. Such a
code is generated by an irreducible polynomial h where h(x)|(xs − 1). Let
t = degree(h); clearly t ≤ s. Consider the finite field F = Fq[X]/(h(X))
which is isomorphic to GF(2t), and consider the subgroup S of size s of
F comprising of {1, X, X2, X3, . . . , Xs−1}. The fact that C has distance at
least 5 implies that

∑
i∈G X i is not divisible by h(X) for any set G of size

at most 4, and thus no four or fewer distinct elements of S sum up to 0
in the field F . This gives us one value of t ≤ s for which the conditions
of Lemma 4.21 are met, but it is easy to see that any multiple of t also
works, since the same S is also a (multiplicative) subgroup of GF(2kt) for
all k ≥ 1. In particular we can repeatedly double t until it lies in the range
s/2 ≤ t ≤ s (note that we had t ≤ s to begin with). The claim about the
cosets also follows easily, since if a1 + a2 + a3 + a4 = 0 where each ai ∈ βS,
then β−1a1 + β−1a2 + β−1a3 + β−1a4 = 0 as well, and since β−1ai ∈ S, this
contradicts the property of S. �

We now have all the ingredients necessary to easily deduce Theorem 4.16.

Proof of Theorem 4.16: Theorem 4.16 now follows from Lemma 4.19 and
Lemma 4.21. Note also that the statement of Lemma 4.21 implies the remarks
made after the statement of Theorem 4.16. � (Theorem 4.16)

4.7 Super-polynomial List Sizes at the Johnson Bound

We will now combine elements of the constructions from the previous two
sections to prove Theorem 4.7, which states that, assuming a certain number-
theoretic conjecture, the Johnson radius is the true bound on list decoding
radius as a function of the distance of the code alone.

4.7.1 Proof Idea

As in the previous section, the high level idea is to use an outer Reed-Solomon
code over a finite field F = GF(2l) and concatenate it with an inner code
that (roughly stated) maps all elements of a multiplicative subgroup S of F∗,
consisting of r’th powers for some suitable r, into some small Hamming ball.
Hence all codewords of the concatenated code that correspond to evaluations
of polynomials that are perfect r’th powers get mapped into a small Hamming
ball, giving the desired construction. In the previous section, the inner code
was the Hadamard code and the subgroup was picked so that there existed
a Boolean function with large Fourier support on elements of the subgroup.

72 4 Limits to List Decodability

In this section, the inner code Cin will be the one guaranteed by
Lemma 4.13, with a suitable choice of k in relation to the size of the subgroup
S. But now this inner code is only guaranteed to map some 2k messages into
a small Hamming ball, and these 2k messages need not have anything to do
with the elements of the subgroup under consideration. However, here comes
the crucial idea. These 2k messages (viewed as vectors over F2 of suitable
length) must contain a linearly independent subset T of size k. Now, if the
elements of S ⊆ GF(2l) are linearly independent over GF(2), then there must
exist a invertible GF(2)-linear map F which maps elements of S into those
of T (in some arbitrary ordering of the elements of S, T).7. Define C′

in to be
Cin ◦F (i.e., the encoding under C′

in first encodes the message by the invert-
ible map F , and then encodes the resulting string using Cin). Note that since
F, Cin are linear codes, so is C′

in. Now C′
in will map all elements of S into a

small Hamming ball, since Cin does so for elements of T . Using C′
in as the

inner code with outer Reed-Solomon code, and using arguments similar to
those used in Lemma 4.17, we can get, after a suitable choice of parameters,
a super-polynomial number of codewords in a Hamming ball of radius close
to the Johnson bound on list decoding radius.

The astute reader might be puzzled about the need for the seemingly odd
number-theoretic conjecture assumed in the hypothesis of Theorem 4.7. This
arises because of the need to have a multiplicative subgroup whose elements
are linearly independent over GF(2). We do not know how to prove that
such subgroups exist for infinitely many sizes without making any number-
theoretic assumption. However, this fact is implied by the conjecture that
there exist infinitely many primes p for which 2 is a generator of the cyclic
group F∗

p (this is a special case of a more general and famous conjecture
known as the Artin conjecture; recall the discussion following the statement
of Theorem 4.7).

4.7.2 The Technical Proof

We first record the number-theoretic fact stated at the end of the previous
section.

Lemma 4.22. Let p be an odd prime and let 2 be a generator of the multi-
plicative group F∗

p of the finite field Fp. Let α be the primitive p’th root of unity
in the field GF(2p−1) (this must exist since 2p−1 ≡ 1 mod p by Fermat’s little
theorem). Consider the subgroup (1, α, . . . , αp−1) of the multiplicative group
of GF(2p−1). Then the only non-trivial linear dependence among these p ele-
ments is: 1 + α + · · ·+ αp−1 = 0. In particular, the elements α, α2, . . . , αp−1

are linearly independent over GF(2).

7The fact that elements of S are linearly independent over GF(2) is independent
of the specific representation of GF(2l) over GF(2), since this fact only depends on
the additive properties of the subgroup S

4.7 Super-polynomial List Sizes at the Johnson Bound 73

Proof: We claim that if 2 is a generator of F∗
p, then the polynomial g(x) =

1 + x+ x2 + . . .+ xp−1 is irreducible over GF(2). Indeed, let α be a primitive
p’th root of unity over GF(2); then g(α) = 0 and therefore the irreducible
polynomial h of α over GF(2) (i.e. the polynomial of lowest degree that α

satisfies) must divide g. Since h(α) = 0, we also have h(α2i

) = h(α)2
i

= 0
(as we are working over characteristic two). Now, since 2 generates F∗

p and
α is a primitive p’th root, the quantities α2i

, 0 ≤ i < p − 1 are all distinct.
Thus h has p−1 distinct zeroes, and hence it has degree at least (p−1). But
since h divides g, and g has degree (p − 1), we must have that g is a scalar
multiple of h, and since we are working over GF(2), this implies h = g. Thus
the irreducible polynomial of α over GF(2) is g(x) = 1 + x + x2 + . . . + xp−1.
This implies that α satisfies no polynomial equation of degree (p− 2) or less,
and moreover g is the only polynomial of degree (p−1) that α is a root of. In
other words, the relation 1 + α + . . . + αp−1 = 0 is the only non-trivial linear
dependence among the elements of the subgroup (1, α, α2, . . . , αp−1). �

Corollary 4.23. Assume that there exist infinitely many primes p for which
2 is a generator of F∗

p. Then for each one of those infinitely many primes
the following holds: For every b ≥ 1, there exists a multiplicative subgroup
S′ of GF(2(p−1)b) \ {0} of size p such that the only GF(2)-linear dependence
among elements of S′ is that their sum is zero. In particular, any set of (p−1)
elements of the subgroup are linearly independent over GF(2).

We now state and prove the main theorem of this section. The result of
Theorem 4.7 then follows as a corollary.

Theorem 4.24. Assume that there exist infinitely many primes p for which
2 is a generator of F∗

p. Then, for every δ, 0 < δ < 1/2, and every ε > 0, there
exist infinitely many N for which there exists a binary linear code of block-
length N and minimum distance at least δN that has at least NΩ(ε log log log N)

codewords in a Hamming ball of radius N
2 (1−√

1− 2δ − ε).

Proof: The proof follows the idea outlined in Section 4.7.1. We just need
to pick the various parameters appropriately and then carefully bound the
number of codewords within a certain Hamming ball of the desired radius.

Let p be a prime such that 2 is a generator of F∗
p. Apply Lemma 4.13

with the choice of k = (p − 1) and δ = δ/(1 − ε) to get a binary linear
code C′ = Cbin

(p−1),δ/(1−ε) of relative distance at least δ′ def= δ/(1− ε). Let the
dimension of C′ be (p− 1)b and let its blocklength be n′; we have b ≤ 2O(2p)

and n′ ≤ 2O(p
√

b).
Let S′ = (1, α, α2, . . . , αp−1) be a multiplicative subgroup of GF(2(p−1)b)

consisting of the r’th powers in GF(2(p−1)b) \ {0} where r = 2(p−1)b−1
p . By

Corollary 4.23, the elements in S = (α, α2, . . . , αp−1) are linearly indepen-
dent. By Lemma 4.13, there exist a set of at least 2p−1 codewords of C′ in a
Hamming ball B of radius n′

2 (1 − √
1− 2δ′ − ε), centered at some v ∈ Fn′

2 .

74 4 Limits to List Decodability

Among these 2p−1 codewords there must exist at least (p−1) non-zero code-
words corresponding to a set T of (p− 1) linearly independent messages (in
F

(p−1)b
2). Owing to the linear independence of elements of both S and T ,

there must be an invertible linear transformation F that maps the elements
of S into those of T (for some fixed ordering of the elements of S and T).
Consider the linear code C′′ = C′ ◦ F , i.e., encoding by F followed by the
encoding C′. Since F is an invertible linear transformation, C′′ is a binary
linear code that has the same dimension (namely (p − 1)b) and minimum
distance as C′. Also, clearly the encodings of the elements of S as per C′′ all
lie in the ball B, which is of radius n′

2

(
1−

√
1− 2δ

1−ε − ε
)
.

The final code C∗ we use to prove the claim of the theorem will be a
Reed-Solomon code over GF(2(p−1)b) of rate ε and blocklength n = 2(p−1)b,
concatenated with C′′ as the inner code. We first quantify the main param-
eters of C∗. Its blocklength is

N = n · n′ = 2(p−1)bn′ ≤ 2pb2O(p
√

b) = 2p·2O(2p)

(since b ≤ 2O(2p)). The relative distance of C∗ is at least (1−ε) ·δ′ = δ. Since
there are infinitely many choices of p by the hypothesis, we can construct
such a code C∗ for infinitely many blocklengths N . The messages of C∗ are
in one-one correspondence with degree εn polynomials over GF(n). Also note
that the blocklength n of the outer Reed-Solomon code satisfies n = NΩ(1).

Now as in the proof of Lemma 4.17, we will establish a lower bound
on the number of polynomials whose evaluations at the field elements of
GF(2(p−1)b) belong to the set S for “most” of the n field elements. We will
do this by considering polynomials of the form P (x) = R(x)r where R is a
random degree εn/r polynomial, and estimating the probability that P (γi) ∈
S for a large fraction of i’s (here we assume γ1, . . . , γn are the elements of
GF(2(p−1)b)). This will imply that for r = vn, i.e. the center v of the ball
B repeated n times, once for each Reed-Solomon codeword position, a ball
centered at r of radius “about” N

2 (1 − √
1− 2δ) will have several (about

nεn/r) codewords, and for our choice of parameters this will yield a super-
polynomial number of codewords within a ball of radius close to the Johnson
radius.

The analysis of this random experiment proceeds very similarly to that of
Lemma 4.17. The r’th power of any elements of GF(n) always lies in S∪{0, 1}.
For the choice of P (x) = R(x)r for a random R, for a fixed γj we have

(a) Pr[P (γj) = 0] = 1/n;
(b) Pr[P (γj) = 1] = r/n; and
(c) Pr[P (γj) ∈ S] = (n− r − 1)/n;

For 1 ≤ j ≤ n, define the indicator random variable Ij as follows:

Ij =
{

1 if P (γj) ∈ S
0 otherwise

4.7 Super-polynomial List Sizes at the Johnson Bound 75

Then the random variable Z =
∑n

j=1 Ij measures the number of positions j,
1 ≤ j ≤ n, for which P (γj) ∈ S. By (c), we have, for P chosen randomly as
above,

E[Z] = n− r − 1 (4.14)
Also the Ij ’s are pairwise independent 0/1 random variables and hence

Var(Z) =
n∑

j=1

Var(Ij) =
n∑

j=1

E[Ij](1−E[Ij]) =
(n− r − 1)(r + 1)

n
. (4.15)

By Chebyshev’s inequality we have

Pr[Z ≤ n− r − 1−√
n] ≤ Pr[|Z −E[Z]| ≥ √

n]

≤ Var(Z)
n

≤ (n− r − 1)(r + 1)
n2

≤ 2/p (since r + 1 = (n + p− 1)/p ≤ 2n/p)
≤ 1/2 (for p ≥ 4).

Hence at least a fraction 1/2 of the polynomials P of the form P (x) = R(x)r

satisfy P (γj) ∈ S for at least (n− r−√n) values of j. For these polynomials,
their encoding by C∗ will differ from r in at most

e = (n− r −√
n)

n′

2

(
1−

√
1− 2δ

1− ε
− ε

)
+ (r +

√
n)n′

places. Since n ≤ 2p·2O(2p)
and r = (n − 1)/p, we have r = o(n) and hence

(r +
√

n)n′ = o(nn′) = o(N). Thus

e ≤ N

2

(
1−

√
1− 2δ

1− ε
− ε

)
+ o(N) . (4.16)

Since there are nεn/r+1 polynomials R(x) of degree at most εn/r, and at
most r of them can have the same polynomial as their r’th power, we get
that the number of distinct polynomials of degree at most εn whose encodings
differ from r in at most e positions is at least

1
2
· n1+εn/r

r
≥ 1

2
· nεn/r ≥ 1

2
· nεp .

Since n = NΩ(1) and N ≤ 2p·2O(2p)
, we have p = Ω(log log log N). The

number of codewords of C∗ within a Hamming distance of e from r is therefore
NΩ(ε log log N).

Since ε > 0 was arbitrary, from Equation (4.16) the result claimed in the
theorem follows. �

Letting ε → 0, the bound in Theorem 4.24 approaches the Johnson radius
J(δ) = (1 − √

1− 2δ)/2. As a corollary, therefore, we get Theorem 4.7, our
main result of this section.

76 4 Limits to List Decodability

4.7.3 Unconditional Proof of Tightness of Johnson Bound

Recently, Guruswami and Shparlinski [87] proved unconditionally, without
making any number-theoretic assumption, that Lpoly(δ) is “very close” to
J(δ). Specifically, they prove

Theorem 4.25. For every δ, 0 < δ < 1/2, we have Lpoly(δ) ≤ J(δ)+ 10−50.

We point the reader to [87] for the exact details and just mention the basic
idea. The proof is very similar to that of Theorem 4.24. The main technical
difference will be with respect to Lemma 4.22 and we will use the multiplica-
tive subgroup (1, α, . . . , αps−1) where α is the primitive ps’th root of unity in
the field GF(2(p−1)ps−1

). If p is a 2-good prime, i.e., a prime for which 2 is a
primitive root modulo ps for every s ≥ 1, then the only GF(2)-linear depen-
dence among the elements of this subgroup will be 1+α+α2+· · ·+αps−1 = 0.
Therefore, instead of using a sequence of primes p for which 2 is primitive
root modulo p, we will pick a fixed large 2-good prime p and use the fields
GF(2(p−1)ps−1

) for s ≥ 1 as the sequence of fields over which the outer Reed-
Solomon codes are defined. The larger the 2-good prime p, the closer to J(δ)
the bound we can prove. By picking a 2-good prime larger than 1050 (eg.,
1050+709 is one such prime), we can prove the upper bound of Theorem 4.25
on Lpoly(δ).

4.8 Notes and Open Questions

The study of constant-weight codes has been the subject of a lot of research,
and lower bounds on the rate of constant-weight codes imply certain limits
on the list decodability of codes (by considering the case when the received
word is 0). The result of [73] which we stated in Proposition 4.1 and which
shows the tightness of the Johnson bound for general non-linear codes follows
this spirit. Constant-weight codes are however not linear, and the question
of the tightness of the Johnson bound for linear codes seems to have been
pursued only recently.

The work of Justesen and Hφholdt [113] was primarily motivated by
the question of limits of list decodability of Reed-Solomon codes. They also
showed that the Johnson bound is tight for list decoding with constant-sized
lists for certain MDS codes. And, as we did in Section 4.4 of this chapter,
one can use their results to prove a similar result for binary codes as well,
though one has to perform a somewhat careful analysis of their construction,
and in particular, one needs an explicit upper bound on the alphabet size of
the outer MDS code.

The work of Dumer et al [44] studied the question of getting a super-
polynomial number of codewords in a ball of radius (1/2 + ε)d where d is
the minimum distance of the code. Their motivation was to show an inap-
proximability result for the problem of computing the minimum distance of

4.8 Notes and Open Questions 77

a linear code. The relative distance in their construction approaches 0. By
replacing the outer codes in their construction with appropriate algebraic-
geometric codes, we were able to show in Section 4.5 that Lpoly(δ) < δ for
the entire range 0 < δ < 1/2. This result appears for the first time in this
book.

The results of Section 4.7 that show Lpoly(δ) = J(δ) appear in [76]. Some
of the obvious open questions concerning this chapter are:

Question 4.26. Prove the result of Theorem 4.7 (i.e. Lpoly(δ) = (1 −√
1− 2δ)/2) without making any number-theoretic assumption. (Note the

result of Theorem 4.25 “almost” proves this, but needs a small slack on top
of the Johnson bound.)

Question 4.27. For 0 < δ < 1/2, does there exist a linear code of relative
distance δ with an exponential (and not just super-polynomial) number of
codewords within a Hamming ball of relative radius equal to (or close to) the
Johnson radius J(δ)?

Question 4.28. Can one prove the result of Theorem 4.10 with an explicit
construction? If so, can one also get an exponential number of codewords in
an explicitly specified Hamming ball of relative radius strictly less than the
relative distance?

A positive resolution to the last question will most likely enable deran-
domizing the reduction in [44] and showing the NP-hardness of approximating
the minimum distance of a code by a deterministic reduction.

Finally, our binary code constructions from Theorems 4.5, 4.9 and 4.7 all
have vanishing rate. This is alright for the applications in this chapter since
we are only concerned about the distance vs. list decodability relation and
are not directly concerned about the rate. However, it will still be interesting
to obtain asymptotically good code constructions to prove the results of this
chapter.

Question 4.29. Can one prove analogs of Theorems 4.5, 4.9 and 4.7 with the
additional requirement of the concerned code constructions being asymptot-
ically good ?

Note that a larger rate should intuitively only help us, since there are
more codewords in all and thus it should be easier to have several of them
within a Hamming ball of relatively small radius. However, we cannot simply
add more codewords to increase the rate, since we also have to maintain a
certain distance property, and obtaining high rate, large distance and small
list decoding radius simultaneously is a non-trivial task. We expect that by
using an outer AG-code instead of a Reed-Solomon code one should be able
to prove Theorem 4.9 with asymptotically good codes. Using a similar idea,

78 4 Limits to List Decodability

the construction of Section 4.7 can be viewed as “evidence” towards the fact
that a proof of Theorem 4.5 for constant-sized lists with asymptotically good
codes will lead to a proof of Theorem 4.7 for super-polynomial list sizes with
codes of non-vanishing rate.

5 List Decodability Vs. Rate

Once you eliminate the impossible, whatever remains,
no matter how improbable, must be the truth.

Sherlock Holmes (by Sir Arthur Conan Doyle)

5.1 Introduction

In the previous two chapters, we have seen on the one hand that any code
of distance d can be list decoded up to its Johnson radius (which is always
greater than d/2). On the other hand, we have seen that, in general, the
list decoding radius (for polynomial-sized lists), purely as a function of the
distance of the code, cannot be larger than the Johnson radius. Together
these pose limitations to the performance of list decodable codes if one only
appeals to the distance-LDR relation of the code in order to bound its list
decoding radius. To present a concrete example, these imply that one can
use a binary code family of relative distance δ to list decode a fraction (1 −√

1− 2δ)/2 of errors, but no better (in general). Hence, to list decode a
fraction (1/2−ε) of errors, one needs binary codes of relative distance (1/2−
O(ε2)). The best known explicit constructions of code families of such high
relative distance achieve a rate of only O(ε6) [6, 164], and there is an upper
bound of O(ε4 log(1/ε)) for the rate of such code families [139].

This raises several natural questions. Can one achieve rate better than
Ω(ε4) for binary codes that have list decoding radius (1/2−ε)? Note that the
limitation discussed above comes in part from the rate vs. distance trade-off of
codes, and in part from bounding the list decoding radius purely as a function
of the distance of the code (via the Johnson bound). If one is interested in
list-of-L decoding for some large constant L, the parameters that are directly
relevant to the problem are list-of-L decoding radius and the rate of the
code. Note that the distance of the code does not (at least directly) appear
to be relevant to the problem at all. Since we are only interested in list-of-L
decoding, why should one use codes optimized for the minimum distance (i.e.,
the list-of-1 decoding radius)? A closer examination of this question suggests
the possibility that by “directly” optimizing the rate as a function of the list
decoding radius, one might be able to do better than the two-step method
that goes via the distance of the code.

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 79-92, 2004.
© Springer-Verlag Berlin Heidelberg 2004

80 5 List Decodability Vs. Rate

This indeed turns out to be the case, as results in this chapter demon-
strate. We will exhibit codes that achieve trade-offs between list decodability
and rate which are provably beyond what can be achieved by going via the
distance of the code. While the rate vs. distance trade-off is one of the central
problems in coding theory and has received lots of attention, the list decoding
radius vs. rate question has received much less attention. This chapter stud-
ies this trade-off and proves non-trivial lower bounds on the rate of certain
list decodable codes. The basic approach is to use the probabilistic method
to show the existence of certain codes. The results of this chapter highlight
the potential and limits of list decoding, which in turn sets up the stage for
the algorithmic results of Part II by indicating the kind of parameters one
can hope for in efficiently list decodable codes. Furthermore, some of the
results provide “good” inner codes for some of our later concatenated code
constructions.

5.2 Definitions

The aim of this chapter is to study the trade-offs between list decoding radius
and the rate of code families. In order to undertake such a study systemati-
cally, we first develop some definitions and notation. It might be of help to
the reader to recall the definition of list decoding radius from Section 2.1.4.

Definition 5.1. For an integer q, real p with 0 ≤ p ≤ (1 − 1/q), and list
size function � : Z+ → Z+, the rate function for q-ary codes with list-of-�
decoding radius p, denoted R�,q(p), is defined to be

R�,q(p) = sup
C:LDR�(C)≥p

R(C) . (5.1)

where the supremum is taken over all q-ary code families C with LDR�(C) ≥ p.
When � is the constant function which takes on the value L for some integer
L ≥ 1, we denote the above quantity as simple RL,q(p).
For a family of integer-valued functions F , one defines the quantity

RF ,q(p) = sup
�∈F

R�,q(p) .

Remark: We have the restriction p ≤ (1−1/q) in the above definition, since
it is easy to see that a q-ary code family of non-vanishing rate can never be
list decoded from beyond a fraction (1− 1/q) of errors with polynomial-sized
lists. We will often omit the subscript q when the alphabet size is clear from
context, or when referring to the binary case. Whether the list size subscript is
a constant, an integer-valued function, or a family of integer-valued functions
will be clear from the context.

Note that RL,q(p) is the best (largest) rate of a q-ary code family which
can list decoded up to a fraction p of errors using lists of size L. We next
define the rate function for list decoding with arbitrary constant-sized lists.

5.3 Main Results 81

Definition 5.2. For an integer q and real p, 0 ≤ p ≤ (1 − 1/q), the rate
function for list decoding by constant-sized lists, denoted Rconst

q (p), is defined
to be

Rconst
q (p) = lim sup

L→∞
{RL,q(p)} .

We will also be interested in the analogous rate function RL,q when the
codes in consideration are restricted to be linear. This is an interesting case
to consider both combinatorially and because linear codes are much easier to
represent, encode and operate with.

Definition 5.3. We define the analogous rate functions R�,q, RL,q and RF ,q

when restricted to linear codes by Rlin
�,q, Rlin

L,q and Rlin
F ,q, respectively. Likewise

the function Rconst
q , when restricted to linear codes, is denoted by Rconst,lin

q .

5.3 Main Results

With the definitions of the previous section in place, we now move on to
studying the properties of the rate functions RL,q and the like. Firstly, note
that R1,q(p) is precisely the best asymptotic rate of a q-ary code family of
relative distance 2p, and its study is one of the most important and still widely
open problems in coding theory. Similarly, while a precise understanding of
RL,q seems hopeless at this point, we can nevertheless focus on obtaining good
upper and lower bounds on this function. And, as the result of Theorem 5.4
below states, the function Rconst

q is in fact precisely known.

5.3.1 Basic Lower Bounds

We remark here that the results in this section are proved by analyzing the
performance of random codes and showing that a random code of a certain
rate has the desired list decodability properties with very high probability. In
other words, “most” codes have the rate vs. list decodability trade-off claimed
in this section. The following result was implicit in [203] and was explicitly
stated and proved in [50].

Theorem 5.4 ([203, 50]). For every q and every p, 0 ≤ p ≤ (1 − 1/q), we
have

Rconst,lin
q (p) = Rconst

q (p) = 1−Hq(p) (5.2)

(recall that Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x) is the q-ary
entropy function).

We will defer the proof of the above result to later in this section. It is
easy to verify that Hq(1 − 1/q − ε) � 1 − O(ε2) for small ε > 0, and hence
the above result implies, in particular, that for each fixed q, the best rate for
families of linear q-ary codes list decodable up to a fraction (1− 1/q − ε) of

82 5 List Decodability Vs. Rate

errors is Θ(ε2). Recall that the best rate one could hope for via the “distance
and Johnson bound” based approach was about ε4. The conclusion therefore
is that there exist codes which are list decodable well beyond their Johnson
radius with small lists, and in fact most codes have this property!

“Capacity-Theoretic” Interpretation of Theorem 5.4 There is a very
nice interpretation of the result of Theorem 5.4 by comparing it with Shan-
non’s theorem on capacity of noisy channels, when applied to the specific
case of the q-ary symmetric channel, call it qSCp. The channel qSCp trans-
mits a q-ary symbol without distortion with probability (1 − p), and with
the remaining probability, distorts it to one of the other (q − 1) symbols,
picked uniformly at random. In other words, the probability that symbol α
is distorted to symbol β equals p

q−1 if α
= β, and equals (1 − p) if α = β.
The Shannon capacity of such a channel equals 1−Hq(p). Therefore, one can
communicate reliably over this channel at a rate as close to 1−Hq(p) as one
seeks, but not at any rate greater than 1−Hq(p).

The channel qSCp makes an expected fraction p of errors, and in fact
for all sufficiently large blocklengths, the fraction of errors will be close to p
with overwhelming probability (by the Chernoff-Hoeffding bounds for i.i.d.
events). However, Shannon’s theorem relies on the fact the (close to) p frac-
tion of errors will be randomly distributed. The result of Theorem 5.4 states
that by using list decoding with list size a sufficiently large constant, we can
communicate at a rate arbitrarily close to the “capacity” 1 − Hq(p), even
if the channel corrupts an arbitrary p fraction of symbols in an adversarial
manner.

Thus, list decoding allows us to approach the Shannon capacity even if
the errors are adversarially effected, provided we use lists of large enough
size in the decoding. This view indicates that list decoding can achieve the
best performance one can hope for under a standard probabilistic error model
even under the much stronger adversarial error model.

Proof of Theorem 5.4 In order to prove Theorem 5.4, we first focus on
results that obtain lower bounds on the rate function for list decoding with
a fixed list size L. We will then apply these results in the limit of large L
to deduce Theorem 5.4. We first prove a lower bound on RL,q(p) for general
codes, and will then prove a result for linear codes.

Theorem 5.5 ([50]). For every q and every p, 0 ≤ p ≤ (1− 1/q), we have

RL,q(p) ≥ 1−Hq(p)
(
1 +

1
L

)
. (5.3)

Proof: Fix a large enough blocklength n and set e = �np�. The idea is to
pick a random code consisting of 2M codewords, where M is a parameter
that will be fixed later in the proof. We will show that with high probability
by removing at most M of the codewords the resulting code will be (e, L)-list

5.3 Main Results 83

decodable. This is a fairly standard method in coding theory and is called
“random coding with expurgation”.

The probability that a fixed set of (L + 1) codewords all lie in a fixed
Hamming sphere (in the space [q]n) of radius e equals (Vq(n, e)/qn)L+1 where
Vq(n, e) is the volume of a Hamming sphere of radius e in [q]n. It is well-known
that Vq(n, e) ≤ qHq(e/n)n ≤ qHq(p)n (see for example [193, Chapter 1]). Hence
this probability is at most q−(L+1)(1−Hq(p))n.

Therefore, the expected number Nbad of sets of (L + 1) codewords which
all lie in some Hamming sphere of radius e is at most(

2M

L + 1

)
· qn · q−(L+1)(1−Hq(p))n ≤ (2M)L+1 · q−Ln+(L+1)Hq(p)n . (5.4)

Let us pick M so that it is at least the upper bound in (5.4). For example,
we can pick

M = �q(1−(1+1/L)Hq(p))n21+1/L� ≥ q(1−(1+1/L)Hq(p))n . (5.5)

Then the expected value of Nbad is at most M , and therefore there exists a
code with 2M codewords that has at most M sets of (L + 1) codewords that
lie in a Hamming ball of radius e. Now, we can remove one codeword from
each of these (at most M) subsets of (L + 1) codewords that lies in a ball of
radius e. This process reduces the size of the code by at most M codewords.
After this expurgation, we have a code with at least M codewords which is
(e, L)-list decodable. Since e = �pn�, using (5.5) we get the desired lower
bound on RL,q(p). �

We next prove the analog of the above result when restricted to linear
codes; the lower bound is much weaker than that for general codes in that one
needs very large lists to get close to the limiting rate Rconst

q (p) = 1−Hq(p).
The result first appeared implicitly in the work of Zyablov and Pinsker [203].

Theorem 5.6. For every q and every p, 0 ≤ p ≤ (1− 1/q), we have

Rlin
L,q(p) ≥ 1−Hq(p)

(
1 +

1
logq(L + 1)

)
. (5.6)

Proof: The idea is to once again pick a random code (specifically a linear code
of blocklength n and dimension k) and then argue that with high probability
it will have the required (e, L)-list decodability property (as before we set
e = �pn�).

The main problem in applying the argument from the proof of Theo-
rem 5.5 is that a subset of L codewords of a random linear code are no longer
mutually independent. A random [n, k]q linear code C is picked by picking
a random n × k matrix A over Fq, and the code is given by {Ax : x ∈ Fk

q}.
Define J = �logq(L+1)�. Now every set of L distinct non-zero messages in Fk

q

contain a subset of at least J messages which are linearly independent over

84 5 List Decodability Vs. Rate

Fq. It is easily verified that such linearly independent J-tuples are mapped
to J mutually independent codewords by a random linear code. We can then
apply estimates similar to the proof of Theorem 5.5 applied to this subset of
J codewords.

We now bound from above the probability that a random linear code C
is not (e, L)-list decodable. We first make the following useful observation:
A linear code C is (e, L)-list decodable iff no one of the Hamming balls of
radius e around points in Bq(0, e) contain L or more non-zero codewords. The
condition is clearly necessary; its also sufficient by linearity. Indeed, suppose
there is some y ∈ Fk

q with |Bq(y, e) ∩C| ≥ L + 1. Let c ∈ Bq(y, e) ∩C. By
linearity, we have |Bq(y − c, e) ∩ C| ≥ L + 1 as well. But w = y − c has
Hamming weight at most e, and Bq(w, e) has at least L non-zero codewords.

The probability that codewords corresponding to a fixed J-tuple of lin-
early independent messages all lie in a fixed Hamming ball Bq(w, e) is at most(
q(Hq(p)−1)n

)J . Multiplying this by the number of such linearly independent
J-tuples of messages and the number of choices for the center w ∈ Bq(0, e),
we get that the probability that some J-tuple of linearly independent mes-
sages all lie in some Hamming ball of radius e is at most

qkJ · qHq(p)n · q(Hq(p)−1)Jn = q−nJ
(
1−(1+1/J)Hq(p)−k/n

)
. (5.7)

Since every set of L non-zero codewords has a subset of J codewords corre-
sponding to the encodings of linearly independent messages, the above also
gives an upper bound on the probability that C is not (e, L)-list decodable.
Picking the dimension to be, say, k = �(1 − (1 + 1/J)Hq(p))n − √

n�, we
get exponentially small failure probability for random linear codes with rates
approaching 1 − (1 + 1/J)Hq(p). Hence there exists a linear code family of
rate 1− (1 + 1/J)Hq(p) and LDRL,q ≥ p, as desired. �

Proof of Theorem 5.4: The lower bounds in both Theorems 5.5 and 5.6 ap-
proach 1−Hq(p) as the list size L →∞. It remains to prove the upper bounds.
Clearly Rconst,lin

q (p) ≤ Rconst(p), so it suffices to prove Rconst(p) ≤ 1−Hq(p).
This is quite straightforward. Let C be a q-ary code of blocklength n and
rate r > 1−Hq(p). Pick a random x ∈ [q]n and consider the random variable
X = |Bq(x, pn) ∩ C|. The expected value of X is clearly |C| · |Bq(0, pn)|/qn

which is at least q(r+Hq(p)−1)n−o(n). If r > 1 − Hq(p), this quantity is of
the form qΩ(n). Hence a random ball of radius pn has exponentially many
codewords. We must therefore have Rconst(p) ≤ 1−Hq(p). �

We also record the following result which is obtained by combining the
Gilbert-Varshamov bound (for rate vs. distance trade-off) with the John-
son bound on list decoding radius (which gives a certain LDR vs. distance
trade-off). Such a result was made explicit for binary codes in [50] — below
we state it for general alphabets.

5.3 Main Results 85

Theorem 5.7. For every prime power q and every p, 0 ≤ p ≤ (1− 1/q), and
every integer L ≥ 1, we have

Rlin
L,q(p) ≥ 1−Hq

((
1− 1

q

) L

L− 1

(
1−

(
1− qp

q − 1

)2))
. (5.8)

Proof (Sketch): The Gilbert-Varshamov bound (see, for instance, [193,
Chapter 5]) implies that there exist q-ary linear code families of relative
distance δ and rate R where

R ≥ 1−Hq(δ) . (5.9)

(In fact a random linear code achieves this trade-off with high probability.)
The result of Theorem 3.1 on the Johnson radius for list decodability im-
plies that a q-ary code of relative distance δ and blocklength n is (pn, L)-list
decodable for

p =
(
1− 1

q

)(
1−

(
1− q

q − 1
L− 1

L
δ
)1/2)

. (5.10)

Combining (5.9) and (5.10) gives us the desired result. �

5.3.2 An Improved Lower Bound for Binary Linear Codes

Consider the result of Theorem 5.6 for the case of binary linear codes and
when p = 1/2 − ε (i.e. we wish to correct close to the “maximum” possible
fraction of errors). For this case it implies that there exist rate Θ(ε2) families
which are list decodable to a fraction (1/2 − ε) of errors with lists of size
2O(ε−2). While the list size is a constant, it is exponential in 1/ε and it is
desirable to reduce it to polynomial in 1/ε. By appealing to the Johnson
radius based bound of Theorem 5.7, one can achieve a list size of O(1/ε2)
for decoding up to a fraction (1/2 − ε) of errors, but the rate goes down to
O(ε4).

Next, we present an improved result for binary linear codes which com-
bines the optimal Ω(ε2) rate with O(1/ε2) list size. Recall that the result of
Theorem 5.5 already implies this for general, non-linear codes, and the follow-
ing result closes the gap between linear and non-linear codes for list decoding
up to a fraction (1/2− ε) of errors (closing this disparity was highlighted by
Elias [50] as an open question).

As we shall show in Section 5.3.4, a list size of Ω(1/ε2) is really necessary
(even for general, non-linear codes), and thus this result is optimal up to
constant factors for the case p = (1/2− ε).

Theorem 5.8. For each fixed integer L ≥ 1, and 0 ≤ p ≤ 1/2, we have

Rlin
L (p) ≥ 1−H(p)− 1

L
, (5.11)

where H(x) = −x lg x− (1−x) lg(1−x) denotes the binary entropy function.

86 5 List Decodability Vs. Rate

Proof: For each fixed integer L ≥ 1 and 0 ≤ p < 1/2 and for all large enough
n, we use the probabilistic method to guarantee the existence of a binary
linear code C of blocklength n that is (e, L)-list decodable for e = pn, and
whose dimension is k = �(1 −H(p)− 1/L)n�. This clearly implies the lower
bound on the rate function for binary linear codes claimed in (5.11).

The code C = Ck will be built iteratively in k steps by randomly picking
the k basis vectors in turn. Initially the code C0 will just consist of the all-
zeroes codeword b0 = 0n. The code Ci, 1 ≤ i ≤ k, will be successively built
by picking a random (non-zero) basis vector bi that is linearly independent
of b1, . . . , bi−1, and setting Ci = span(b1, . . . , bi). Thus C = Ck is an [n, k]2
linear code. We will now analyze the list of L decoding radius of the codes Ci,
and the goal is to prove that the list of L decoding radius of C is at least e.

The key to analyzing the list of L decoding radius is the following potential
function SC defined for a code C of blocklength n:

SC =
1
2n

∑
x∈{0,1}n

2
n
L ·|B(x,e)∩C| . (5.12)

For notational convenience, we denote SCi be Si. Also denote by T i
x the

quantity |B(x, e) ∩ Ci|, so that Si = 2−n
∑

x 2nT i
x/L.

Let B = |B(0, e)| = |B(0, pn)|; then B ≤ 2H(p)n (see for example Theo-
rem (1.4.5) in [193, Chapter 1]). Clearly

S0 =
(2n −B) + B · 2n/L

2n
≤ 1+B ·2−n(1−1/L) ≤ 1+2n(H(p)−1+1/L) . (5.13)

Now once Ci has been picked with the potential function Si taking on some
value, say Ŝi, the potential function Si+1 for Ci+1 = span(Ci ∪ {bi+1}) is a
random variable depending upon the choice of bi+1. We consider the expecta-
tion E[Si+1|Si = Ŝi] taken over the random choice of bi+1 chosen uniformly
from outside span(b1, . . . , bi). For better readability, below we sometimes use
exp2(z) to denote 2z.

E[Si+1|Si = Ŝi]

= 2−n
∑

x

E[exp2(n/L · T i+1
x)]

= 2−n
∑

x

E[exp2(n/L · (|B(x, e) ∩ Ci|+ |B(x, e) ∩ (Ci + bi+1)|
)
)]

= 2−n
∑

x

(
exp2(n/L · T i

x) E
bi+1

[exp2(n/L · T i
x+bi+1

)]
)

(5.14)

where in the second and third steps we used the fact that if z ∈ B(x, e)∩Ci+1,
then either z ∈ B(x, e) ∩ Ci, or z + bi+1 ∈ B(x, e) ∩ Ci. To estimate the
quantity (5.14), we use the fact that the expectation of a positive random
variable taken over bi+1 chosen randomly from outside span(b1, . . . , bi) is at

5.3 Main Results 87

most (1− 2i−n)−1 times the expectation taken over bi+1 chosen uniformly at
random from {0, 1}n. Using (5.14) we therefore get:

E[Si+1|Si = Ŝi] ≤ (1− 2i−n)−12−n
∑

x

(
2n/L ·T i

x ·
(1

2n

∑
y∈{0,1}n

2n/L ·T i
x+y

))

= (1− 2i−n)−1Ŝi · 2−n
∑

x

2n/L ·T i
x

=
Ŝ2

i

(1− 2i−n)
. (5.15)

Applying (5.15) repeatedly for i = 0, 1, . . . , k − 1, we conclude that there
exists an [n, k] binary linear code C with

SC = Sk ≤ S2k

0∏k−1
i=0 (1− 2i−n)2k−i

≤ S2k

0

(1− 2k−n)k
≤ S2k

0

1− k2k−n
(5.16)

since (1 − x)a ≥ 1− ax for x, a ≥ 0. Combining (5.16) with (5.13), we have

Sk ≤ (1− k2k−n)−1
(
1 + 2n(H(p)−1+1/L)

)2k

and using (1 + x)a ≤ (1 + 2ax) for ax � 1, this gives

Sk ≤ 2 · (1 + 2 · 2k+(H(p)−1+1/L)n) ≤ 6 (5.17)

(the last inequality follows since k = �(1−H(p)− 1/L)n�). By the definition
of the potential Sk from Equation (5.12), this implies that 2n/L·|B(x,e)∩C| ≤
6 · 2n < 2n+3, or |B(x, e) ∩C| ≤ (1 + 3

n)L for every x ∈ {0, 1}n. If n > 3L,
this implies |B(x, e) ∩C| < L + 1 for every x, implying that C is (e, L)-list
decodable, as desired. � (Theorem 5.8)

Remark: One can also prove Theorem 5.8 with the additional property that
the relative distance δ(C) of the code (in addition to its list -of-L decoding
radius) also satisfies δ(C) ≥ p. This can be done, for example, by condition-
ing the choice of the random basis vector bi+1 in the above proof so that
span(b1, b2, . . . , bi+1) does not contain any vector of weight less than pn. It is
easy to see that with this modification, Equation (5.15) becomes

E[Si+1|Ŝi] ≤ Ŝ2
i

(1− 2i+H(p)n−n)
.

Using exactly similar calculations as in the above proof, we can then guar-
antee that there exists a code C of dimension k = �(1−H(p)− 1/L)n� and
minimum distance at least pn that satisfies SC = O(1), and consequently
satisfies LDRL(C) ≥ p.

88 5 List Decodability Vs. Rate

Note that Theorem 5.8, as with the results from the previous section,
is a non-constructive result, in that it only proves the existence of a code
with the desired properties, and does not give an explicit or polynomial time
construction. In fact, unlike the results of Theorems 5.4, 5.5 or 5.6, it does
not even give a high probability result. (For those who might be aware of
such terminology on the probabilistic method, the technique used to prove
Theorem 5.8 is called the semirandom method.) Also the proof seems to work
for the binary case and does not generalize, at least in any obvious fashion,
to the q-ary case for q > 2. The following specific questions, therefore, remain
open:

Question 5.9. Does a random binary linear code have the property claimed
in Theorem 5.8 with high probability ?

Question 5.10. Does an analogous result to Theorem 5.8 hold for q-ary linear
codes for q > 2 ? Specifically, does Rlin

L,q ≥ 1−Hq(p)− 1
L hold for every prime

power q ?

We believe that the answer to both of the questions above is yes. Finally,
we note the following capacity-theoretic consequence of Theorem 5.8: there
exist binary linear codes of rate within ε of the Shannon capacity of the
binary symmetric channel with cross-over probability p, namely within ε of
1 − H(p), even when the fraction p of errors are effected adversarially as
opposed to randomly, provided we use list decoding with lists of size 1/ε.

5.3.3 Upper Bounds on the Rate Function

So far, all of our results concerning the rate functions RL and Rlin
L established

lower bounds on these functions. In other words they proved that codes with
a certain list-of-L decoding radius and certain rate exist. We now turn to the
questions of upper bounds on these functions, namely results which demon-
strate that codes of certain rate and list decodability do not exist. We focus
on binary codes for this section.

The result of Theorem 5.4 shows that one can achieve a rate arbitrarily
close to the optimum rate 1 − H(p) for codes with list decoding radius p,
provided one allows the list size L to grow beyond any finite bound (i.e. by
letting L →∞). This raises the question whether one can attain the rate 1−
H(p) with any finite list size L. The following result, due to Blinovsky [27, 28],
proves that the unbounded list size is in fact necessary to approach a rate of
1−H(p); in other words, it proves that RL(p) is strictly smaller than 1−H(p)
for any finite L and 0 < p < 1/2. The proof of the result is quite complicated
and we refer the interested reader to [27, Theorem 3] (see also [28, Chapter 2]).

Theorem 5.11 ([27]). For every integer L ≥ 1, and each p, 0 ≤ p ≤ 1/2,
we have

RL(p) ≤ 1−H(λ) , (5.18)

5.3 Main Results 89

where λ, 0 ≤ λ ≤ 1/2, is related to p by

p =
�L/2�∑
i=1

(
2i− 2
i− 1

)
(λ(1 − λ))i

i
. (5.19)

Corollary 5.12. For every L ≥ 1 and every p, 0 < p < 1/2, we have
RL(p) < 1−H(p).

Proof: It is not difficult to see that, for 0 ≤ y ≤ 1/2,

∞∑
i=1

(
2i− 2
i− 1

)
(y(1 − y))i

i
= y . (5.20)

Indeed, this follows from the fact that the generating function C(x) =∑
n≥0 cnxn for Catalan numbers, defined by cn = 1

n+1

(
2n
n

)
for n ≥ 0, equals

C(x) = (1 − √
1− 4x)/2. Equation (5.20) above follows with the setting

x = y(1 − y) in the generating function for Catalan numbers. We therefore
have that the λ which satisfies Condition (5.19) is strictly greater than p.
Hence, H(λ) > H(p), and thus RL(p) ≤ 1−H(λ) < 1−H(p). �

5.3.4 “Optimality” of Theorem 5.8

Consider the case of list decoding radius close to 1/2, i.e., the case when
p = 1/2− ε. In this case, Theorem 5.8 implies the existence of binary linear
code families C of rate Ω(ε2) and LDRL(C) ≥ 1/2−ε for list size L = O(1/ε2)
(Theorem 5.5 showed the same result for general, non-linear codes). We now
argue that in light of Theorem 5.11, this result for binary codes for the case
p = 1/2− ε is in fact asymptotically optimal. That is, the rate and list size
guaranteed by Theorems 5.5 and 5.8 are the best possible up to a constant
factor.

By Theorem 5.4, RL(p) ≤ 1 − H(p) for any finite L, and hence for p =
1/2− ε, we get that the rate can be at most O(ε2). It remains to show that
in order to have list-of-L decoding radius (1/2 − ε) and a positive rate, one
needs L = Ω(ε−2). To do this we make use of the result of Theorem 5.11.

The λ that satisfies Condition (5.19) must be at least p. Hence if p =
(1/2− ε), we have 1/2 ≥ λ ≥ (1/2− ε). Therefore λ(1 − λ) ≥ 1/4− ε2.

Now for any integer � ≥ 0 we have
∞∑

i=�+1

(
2i− 2
i− 1

)
(λ(1 − λ))i

i

≥
(

2�

�

)
(λ(1 − λ))�+1

� + 1

∞∑
j=0

(λ(1 − λ))j
(2(2� + 1)

� + 2

)j

=
� + 2
� + 1

(
2�

�

)
(λ(1 − λ))�+1

(� + 2)− 2(2� + 1)λ(1− λ)
(5.21)

90 5 List Decodability Vs. Rate

where in the first step we use the fact that if i = � + 1 + j,

(
2i−2
i−1

)
1
i(

2�
�

)
1

�+1

= 2j

�+j∏
s=�+1

2s− 1
s + 1

≥
(2(2� + 1)

� + 2

)j

.

Together with Condition (5.19) and Equation (5.20) applied with the choice
y = λ, Equation (5.21) above implies

λ ≥ p +
� + 2
� + 1

(
2�

�

)
(λ(1 − λ))�+1

(� + 2)− 2(2� + 1)λ(1 − λ)
,

where � = �L/2�. Plugging in the above into the bound of Theorem 5.11
and using λ(1 − λ) ≥ 1/4− ε2, we get, after some straightforward algebraic
manipulations,

λ ≥ p + Ω
((1 − 4ε2)�+1

�3/2ε2

)
.

Since RL(p) ≤ 1−H(λ) by Theorem 5.11, we get

RL(p) ≤ 1−H
(
p + Ω

((1− 4ε2)�+1

�3/2ε2

))
. (5.22)

In order to have positive rate, the argument to the entropy function H(·)
in the above bound must be at most 1/2. When p = 1/2 − ε, this requires
1/(�3/2ε2) = O(ε), or � = Ω(ε−2). Since � = �L/2�, we needs list size L =
Ω(ε−2), as we desired to show. We record this fact in the following result:

Theorem 5.13. Let ε > 0 be a sufficiently small constant and let C be a
binary code family of rate r that satisfies LDRL(C) ≥ (1/2 − ε). Then we
must have r = O(ε2) and L = Ω(1/ε2).

5.4 Prelude to Pseudolinear Codes

For q > 2, the lower bound on rate we know for list decodable q-ary codes
is much weaker for linear codes (Theorem 5.6) than for general codes (The-
orem 5.5). We conjecture that there exists an answer to open question 5.10
in the affirmative, however a proof of this fact has been elusive.

Linear codes have the advantage of succinct representation and efficient
encoding (for example, using the generator matrix). Thus, they are very at-
tractive from a complexity view-point. This is particularly important for us
later on when we will use the codes guaranteed by the results of the pre-
vious two sections as inner codes in concatenated schemes. In light of the
fact that the existential results are weaker for linear codes, we introduce the
notion of “pseudolinear” codes, which albeit non-linear, still have succinct
representations and admit efficient encoding.

5.5 Notes 91

The basic idea behind pseudolinear codes is the following: to encode a
message x ∈ Fk

q , first “map” it into a longer string hx ∈ Fk′
q and then

encode hx using a suitable n× k′ “generator” matrix A into Ahx. The name
pseudolinear comes from the fact that the non-linear part of the mapping is
confined to the first step which maps x to hx. Of course, to make this useful
the mapping x �→ hx must be easy to specify and compute – this will be the
case; in fact the mapping will be explicitly specified.

The crucial property of pseudolinear codes for purposes of list decodabil-
ity will be that by taking k′ = O(kL), we can ensure that under the mapping
x �→ hx, every set of L distinct non-zero x’s are mapped into a set of L
linearly independent vectors in Fk′

q . Then if we pick a “random” pseudolinear
code by picking a random n × k′ matrix A, we will have the property that
the codewords corresponding to any set of L non-zero messages will be mu-
tually independent. This “L-wise independence property” can then be used
to analyze the list-of-L decoding properties of the random code, in a manner
similar to the analysis of a general, random code.

In a nutshell, the above allows us to translate the list-of-L decoding per-
formance of general codes into similar bounds for L-wise independent pseu-
dolinear codes. The big advantage of pseudolinear codes over general codes is
their succinct representation (since one only needs to store the “generator”
matrix A) and their efficient encoding. They are thus attractive for use as
inner codes in concatenated schemes.

To avoid burdening the reader at this stage, the formal definitions relating
to pseudolinear codes and the analog of Theorem 5.5 and related results for
pseudolinear codes are deferred to Chapter 9 (pseudolinear codes will not be
used in the book until that point). For now, the reader can take comfort in
the fact there is a way to achieve the list decoding performance of general
codes with the more structured pseudolinear codes.

5.5 Notes

Initial works [48, 199, 162, 2] on list decoding investigated the notion on
probabilistic channels, and used random coding arguments to explore the
average decoding error probability of block codes for the binary symmetric
and more general discrete memoryless channels. Combinatorial questions of
the nature investigated in this chapter (and in this book in general), on
the other hand, are motivated by worst-case, not average, error-correcting
behavior.

The study of the maximum rate of (e, L)-list decodable codes in the limit
of large blocklength n with e/n and L fixed originated in the work of Zyablov
and Pinsker [203] who were interested mainly in the use of such codes as in-
ner codes in concatenated schemes. The study of the relation between rate
and list decodability was undertaken systematically for the first time by Bli-
novsky [27] (see also [28]), where non-trivial upper and lower bounds on RL(p)

92 5 List Decodability Vs. Rate

are obtained. The paper of Elias [50] is a very useful resource on this topic
as it presents a nice, limpid survey of the relevant results together with some
new results.

The result of Theorem 5.4 was first implicitly observed in [203]. The result
of Theorem 5.5 and its proof are from [50]. Theorem 5.6 was first observed
in [203]; the proof in this chapter follows the presentation in [50]. The result
of Theorem 5.7 is the generalization to the q-ary case of a similar result for
binary codes that was observed in [50].

Elias [50] was the first to note the disparity between the results for linear
and non-linear codes, and posed the open question whether the requirement
of very large lists in Theorem 5.6 for linear codes was inherent or, as he
correctly suspected, was an artifact of the proof techniques. The result of
Theorem 5.8 for binary linear codes can be viewed as a positive resolution of
this question. This result appears in a joint paper of the author with H̊astad,
Sudan and Zuckerman [80].

Recently, Wei and Feng [195] obtained rather complicated lower bounds
for the function RL(p) as well as its linear counterpart Rlin

L (p). Their bounds
are hard to state and do not have simple closed forms. They conjecture that
their lower bounds for the linear and non-linear case are identical for every
value of the list size. However, they are able to prove this only for list size at
most 3.

Upper bounds on the rate function RL(p) have been studied by Bli-
novsky [27], and he obtained some non-trivial bounds which were mentioned
in Section 5.3.3. For the case of list size L = 2, an improvement to the upper
bound from Theorem 5.11 appears in [16]. A recent paper by Blinovsky [29]
revisits the bounds for the linear and non-linear case from [27], and shows
that the lower bound proved for linear codes is weaker than the one for non-
linear codes for a list size as small as 5.

The notion of pseudolinear codes was defined and basic combinatorial
results concerning them were proven by the author in joint work with In-
dyk [81].

Combinatorial results of a similar flavor to those discussed in this chapter
appear in three other places in this book: in Chapter 8 where a generaliza-
tion of Theorem 5.8 is proven, in Chapter 9 where pseudolinear codes are
discussed, and in Chapter 10 where we discuss analogous questions for the
case of erasures (instead of the errors case discussed in this chapter). Due to
the local nature of the use of these results, we chose not to present them in
this chapter, but instead postpone them to the relevant chapters where they
are needed.

6 Reed-Solomon and Algebraic-Geometric

Codes

I don’t consider this algebra,
but this doesn’t mean that algebraists can’t do it.

Garrett Birkhoff

Interlude: The previous several chapters investigated the combinatorics of
list decoding and indicated what fraction of errors one can hope to correct
with small lists, as a function of the distance and rate of the code. This in-
dicates the “combinatorial” feasibility of list decoding, but provides no way
to turn this into an efficient (polynomial time) algorithm that outputs the
small list of codewords that differ from a received word in a certain num-
ber of positions. (As with unambiguous decoding, the naive search algorithm
takes exponential time for interesting families of codes, and the problem of
list decoding is clearly at least as hard as unambiguous decoding.) With the
combinatorial results in place to guide us in what one can hope for using list
decoding, the next several chapters present efficient list decoding algorithms
for several families of codes. These results take us well on our way to algorith-
mically realizing the potential of list decoding and correcting “well beyond”
half-the-minimum-distance. End Interlude

6.1 Introduction

In this chapter, we present polynomial time list decoding algorithms for two
important classes of algebraic linear codes, namely Reed-Solomon codes and
Algebraic-geometric codes. In addition to the importance of these algorithms
for their own sake (since these are classical, commonly used codes), they
will also be used as crucial subroutines in the decoding algorithms from later
chapters. In some sense, the results in this chapter lie at the heart of the algo-
rithmic content of this book and will be repeatedly appealed to on several oc-
casions in the chapters that follow. Incidentally, the next chapter will present
an abstract unified framework for list decoding “ideal-based codes”, which
captures the algorithms in this chapter. Nevertheless, we chose to present the
algorithm specialized to these codes in this chapter for several reasons includ-
ing: (a) this was the chronological order of the conception of the algorithms,

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 95-145, 2004.
© Springer-Verlag Berlin Heidelberg 2004

96 6 Reed-Solomon and Algebraic-Geometric Codes

(b) to enable the reader to read and understand these algorithms without
the burden of having to deal with abstract algebraic concepts and terminol-
ogy, and (c) Reed-Solomon and AG-codes are perhaps the most important
instantiations of the “ideal-based codes” anyway.

6.1.1 Reed-Solomon Codes

Reed-Solomon codes are among the most basic, important and well-studied
codes in the literature. In addition to their numerous “theoretical applica-
tions”, Reed-Solomon codes are also used in a wide range of “real-world”
applications such as compact discs players, hard disk drives, satellite and
wireless communications, etc. We point the reader to [198] for detailed infor-
mation on the various applications of Reed-Solomon codes.

Recall that the family of Reed-Solomon codes yields [n, k + 1, d = n− k]q
codes for any k < n ≤ q. The alphabet Σ for such a code is a finite field
Fq. The message specifies a polynomial of degree at most k over Fq in some
formal variable x (by giving its k + 1 coefficients). The mapping C maps this
polynomial to its evaluation at n distinct values of x chosen from Fq. (The
code therefore needs an alphabet size q ≥ n.) The distance property follows
immediately from the fact that two distinct degree k polynomials can agree
in at most k places.

Unique decoding of an [n, k +1, n− k] Reed-Solomon codes is possible up
to (n−k−1)/2 errors, since this is the half-the-distance bound. It is, however,
a non-trivial task to solve the unique decoding problem in time polynomial
in the blocklength n. Surprisingly, a classical algorithm due to Peterson [153]
manages to solve this problem in polynomial time, as long as the number of
errors e satisfies e < n−k

2 . Faster algorithms, with running time O(n2) or bet-
ter, are also well-known: in particular the classical algorithms of Berlekamp
and Massey (cf. [23, 132] for a description) achieve such running time bounds.
Of course, if e ≥ (n− k)/2, then there may exist several different codewords
within distance e of a received word, and so one cannot perform unique de-
coding. Our interest in this chapter is on list decoding Reed-Solomon codes
from errors beyond the half-the-distance barrier.

We know from the combinatorial results of the previous chapters that
any Hamming ball of up to the Johnson radius will only have a polynomial
number of codewords, and hence efficient list decoding up to this radius is
potentially possible. For an [n, k +1, n− k] Reed-Solomon code, the Johnson
radius is (n − √

kn) (this is the bound of Corollary 3.3 from Chapter 3).
Thus a nice goal is to match this with an algorithm that list decodes up
to (n − √

kn) errors. However, despite four decades of research on Reed-
Solomon codes, this problem was not known to have an efficient solution. In
fact, it was not known how to correct asymptotically more errors than half-
the-minimum-distance, let alone decoding up to the Johnson radius. In this
chapter, we will present an algorithm that list decodes Reed-Solomon codes
up to their Johnson radius. This is the first algorithm to do so, and in fact

6.1 Introduction 97

is also the first algorithm to decode beyond half-the-minimum distance for
every value of the rate. The algorithm builds upon an earlier algorithm due
to Sudan [178], which in turn is based on ideas from [11]. (See Figure 6.1 for
a graphical depiction of the fraction of errors handled by our algorithm in
comparison to the previous ones.)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
of

 E
rr

or
s

RATE (= k/n)

This Chapter
Distance

Half the Distance
Sudan’s algorithm

Fig. 6.1. Error-correcting capacity plotted against the rate of the code for various
Reed-Solomon decoding algorithms

6.1.2 Algebraic-Geometric Codes

Algebraic-geometric codes are a class of algebraic codes that include Reed-
Solomon codes as a special case. The major drawback of Reed-Solomon codes
is that they require an alphabet size at least as large as the blocklength. This
is not desirable for many applications where codes over a small alphabet are
required. Algebraic-geometric codes of growing blocklength (that tends to
infinity) can be defined over fixed, small alphabets. Therefore, they overcome
this drawback of Reed-Solomon codes. In fact, algebraic-geometric codes are
of significant interest because they yield constructions of codes that beat the
Gilbert-Varshamov bound over an alphabet of size q for all q ≥ 49 which
are an even power of a prime [190]. In other words, for certain choices of the
rate and for large enough blocklengths, they achieve a better trade-off be-
tween the relative distance and the rate than that achieved by random q-ary

98 6 Reed-Solomon and Algebraic-Geometric Codes

codes. Decoding algorithms for algebraic-geometric codes are typically based
on decoding algorithms for Reed-Solomon codes. In particular, Shokrollahi
and Wasserman [165] generalize the algorithm of Sudan [178] for the case of
algebraic-geometric codes. Using a similar approach, we extend our decoding
algorithm to the case of algebraic-geometric codes and obtain a list decod-
ing algorithm correcting an algebraic-geometric code of blocklength n and
designed distance d∗ up to e < n−√

n(n− d∗) errors, improving the previ-
ously known bound of n−√2n(n− d∗)− g + 1 errors (here g is the genus of
the algebraic curve underlying the code). The algorithm runs in polynomial
time based on a specific (non-standard) polynomial size representation of the
underlying algebraic structures.

Applying these results to the best known AG-codes (in terms of the rate
vs. distance trade-off) yields constructions of code families efficiently list
decodable up to a fraction (1 − ε) of errors (i.e., from very large amounts
of noise) over a fixed alphabet of size O(ε−4) and which have rate Ω(ε2).1

This view of the results is very useful for and motivates some of the results in
later chapters when we investigate codes list decodable up to a “maximum”
possible fraction of errors (which is (1 − ε) for general codes, and (1/2 − ε)
for binary codes).

6.1.3 Soft-Decision Decoding Algorithms

For both Reed-Solomon and algebraic-geometric codes, we can generalize
our algorithms to a “weighted version” that can take weights and can de-
code as long as a certain weighted condition is satisfied. The weights allow
us to encode reliability information about the various symbols into the de-
coding. Such decoding is referred to as “soft-decision decoding” (or simply,
“soft decoding”) in the literature. As a simple example, setting a weight to
0 corresponds to deeming that symbol so unreliable as to “erase” it. A more
detailed discussion on soft decoding will appear later in the chapter.

6.2 Reed-Solomon Codes

We now discuss the list decoding algorithm for Reed-Solomon codes.

6.2.1 Reformulation of the Problem

We solve the decoding problem by solving the following (more general)
“curve-fitting” or “polynomial reconstruction” problem over a field F: Given
n distinct pairs of elements {(x1, y1), . . . , (xn, yn)} where xi, yi ∈ F, a degree

1Reed-Solomon codes offer similar list decodability and rate performance, but
have the drawback of very large alphabet size since the alphabet must be at least
as large as the blocklength.

6.2 Reed-Solomon Codes 99

parameter k and an error parameter e, find all univariate polynomials p such
that p(xi) = yi for at least n − e values of i ∈ {1, . . . , n}. Our algorithm
solves this curve-fitting problem for e < n −√

nk. The algorithm presented
here builds upon an earlier algorithm due to [178] and uses properties of al-
gebraic curves in the plane. The main modification is in the fact that we use
the properties of “singularities” of these curves. As in the case of [178] our
algorithm uses the notion of plane curves to reduce our problem to a bivariate
polynomial factorization problem over F (actually only a root-finding prob-
lem for univariate polynomials over the rational function field F(X)). This
task can be solved deterministically over finite fields in time polynomial in
the size of the field or probabilistically in time polynomial in the logarithm of
the size of the field. It can also be solved deterministically over the rationals
and reals [75, 116, 117]. Thus our algorithm ends up solving the curve-fitting
problem over fairly general fields.

We point out here that the main focus of this chapter is on getting polyno-
mial time algorithms maximizing the number of errors that may be corrected.
We do indicate how the algorithms may be implemented with reasonably fast
runtimes, and provide pointers to papers that deal with the topic of fast im-
plementation of the various steps in our algorithm.

Other extensions One aspect of interest with decoding algorithms is how
they tackle a combination of erasures (i.e., some letters are explicitly lost in
the transmission) and errors. Our algorithm generalizes naturally to this case.
Another interesting extension of our algorithm is the solution to a weighted
version of the curve-fitting problem2: Given a set of N pairs {(xi, yi)} and
associated non-negative integer weights w1, . . . , wN , find all polynomials p

such that
∑

i:p(xi)=yi
wi >

√
k ·∑N

i=1 w2
i . We stress here that the xi’s need

not be distinct. This generalization is of interest to soft-decision decoding
of Reed-Solomon codes – a more detailed discussion on this appears in Sec-
tion 6.2.10.

Generalized Reed-Solomon Decoding We now define the problem of
decoding a generalization of Reed-Solomon codes (called Generalized Reed-
Solomon, or GRS codes). We will then formally define the purely algebraic
“polynomial reconstruction” problem. The polynomial reconstruction prob-
lem captures the problem of decoding generalized Reed-Solomon codes, and
hence also Reed-Solomon codes.

2The evolution of the solution to the “curve-fitting” problem is somewhat inter-
esting. The initial solutions of Peterson [153] did not explicitly solve the curve-fitting
problem at all. The solution provided by Welch and Berlekamp [196, 25] do work
in this setting, even though the expositions there do not mention the curve-fitting
problem (see in particular, the description in [67]). Their problem statement, how-
ever, disallows repeated values of xi. Sudan’s [178] allows for repeated xi’s but does
not allow for repeated pairs of (xi, yi). Our solution generalizes this one more step
by allowing a weighting of (xi, yi)!

100 6 Reed-Solomon and Algebraic-Geometric Codes

Definition 6.1 (Generalized Reed-Solomon codes). For parameters n, k
and a field Fq of cardinality q, a vector α of distinct elements α1, α2, . . . , αn ∈
Fq (hence we need n ≤ q), and a vector v of non-zero elements v1, . . . , vn ∈
F , the Generalized Reed-Solomon code GRSFq,n,k,α,v, is the function map-
ping the messages Fk+1

q to code space Fn
q , given by GRSFq,n,k,α,v(m)j =

vj ·
∑k

i=0 mi(αj)i, for m = 〈m0, m1, . . . , mk〉 ∈ Fk+1
q and 1 ≤ j ≤ n.

(The above generalizes Reed-Solomon codes because we allow arbitrary “mul-
tipliers” v1, v2, . . . , vn for the n codewords positions.)

Problem 6.2. (Generalized Reed-Solomon decoding)
Input: Field Fq, n, k, α,v ∈ Fn

q specifying the code GRSFq,n,k,α,v. A vector
y ∈ Fn

q and error parameter e.
Output: All messages m ∈ Fk+1

q such that Δ(GRSFq,n,k,α,v(m),y) ≤ e.

Problem 6.3. (Polynomial reconstruction)
Input: Integers k, t and n points {(xi, yi)}n

i=1 where xi, yi ∈ F for a field F.
Output: All univariate polynomials p ∈ F[x] of degree at most k such that
yi = p(xi) for at least t values of i ∈ [n].

The following proposition is easy to establish:

Proposition 6.4. The generalized Reed-Solomon decoding problem reduces
to the polynomial reconstruction problem.

Proof: It is easily verified that the instance (Fq, n, k,α,v,y, e) of the GRS
decoding problem reduces to the instance (k, n− e, n, {(αi, yi/vi)}n

i=1) of the
polynomial reconstruction problem over the field Fq. �
Organization: In the next few sections, our task will be to solve the poly-
nomial reconstruction problem. We begin with an informal description of
the solution next, followed by a formal description in Section 6.2.3. In Sec-
tion 6.2.4, we prove the correctness of the algorithm. We illustrate the working
of the algorithm by a geometric example in Section 6.2.5. In Section 6.2.6, we
obtain results for specific list sizes by a careful choice of parameters in the
decoding algorithm, and in Section 6.2.7, we present some runtime bounds.

6.2.2 Informal Description of the Algorithm

We first review Sudan’s algorithm [178] since our algorithm builds upon and
generalizes that algorithm. The algorithm has two phases: In the first phase
it finds a polynomial Q in two variables which “fits” the points (xi, yi), where
fitting implies Q(xi, yi) = 0 for all i ∈ [n]. Then in the second phase it finds
all small degree roots of Q, i.e., finds all polynomials p of degree at most
k such that Q(x, p(x)) ≡ 0, or equivalently, such that y − p(x) is a factor
of Q(x, y). These polynomials p form candidates for the output. The main
assertions used to prove the correctness of the algorithm are that:

6.2 Reed-Solomon Codes 101

1. if we allow Q to have a sufficiently large degree then the first phase will
be successful in finding such a bivariate polynomial, and

2. if Q and p have low degree in comparison to the number of points where
yi − p(xi) = Q(xi, yi) = 0, then y − p(x) will be a factor of Q.

Our algorithm has a similar plan. We will find Q of low “weighted” degree
that fits the points. But now we will expect more from the fit. It will not
suffice that Q(xi, yi) is zero — we will require that every point (xi, yi) is a
“singularity” of Q. Informally, a singularity is a point where the curve given
by Q(x, y) = 0 intersects itself. We will make this notion formal as we go
along. In our first phase the additional constraints will force us to raise the
allowed degree of Q. However we gain (much more) in the second phase. In
this phase we look for roots of Q and now we know that p passes through
many singularities of Q, rather than just points on Q. In such a case we
need only half as many singularities as regular points, and this is where our
advantage comes from.

Pushing the idea further, we can force Q to intersect itself at each point
(xi, yi) as many times as we want; in the algorithm described below, this will
be a parameter r. There is no limit on what we can choose r to be; only our
running time increases with r. We will choose r sufficiently large to handle as
many errors as feasible. (In the weighted version of the curve-fitting problem,
we force the polynomial Q to pass through different points a different number
ri times, where ri is proportional to the weight of the point.)

Finally, we come to the question of how to define “singularities”. Tradi-
tionally, one uses the partial derivatives of Q to define the notion of a singu-
larity. This definition is, however, not good for us since the partial derivatives
over fields with small characteristic are not well-behaved. So we avoid this
direction and define a singularity as follows: We first shift our coordinate
system so that the point (xi, yi) is the origin. In the shifted world, we insist
that all the monomials of Q with a non-zero coefficient be of sufficiently high
degree. This will turn out to be the correct notion. (The algorithm of [178]
can be viewed as a special case, where the coefficient of the constant term of
the shifted polynomial is set to zero.)

We first define the shifting method precisely: For a polynomial Q(x, y) and
α, β ∈ F we will say that the shifted polynomial Qα,β(x, y) is the polynomial
given by

Qα,β(x, y) def= Q(x + α, y + β) .

Observe that the following explicit relation between the coefficients {qij} of
Q and the coefficients {(qα,β)ij} of Qα,β holds:

(qα,β)ij =
∑
i′≥i

∑
j′≥j

(
i′

i

)(
j′

j

)
qi′,j′α

i′−iβj′−j .

In particular observe that the coefficients are obtained by a linear transfor-
mation of the original coefficients.

102 6 Reed-Solomon and Algebraic-Geometric Codes

6.2.3 Formal Description of the Algorithm

We now develop and formally present the list decoding algorithm. We will
present a “parameterized” version of the algorithm which works based on
some parameters (like list size, number of “singularities” at each point, the
maximum number of errors that must be list decoded, etc.). From this we
will derive a general decoding condition (viz. Proposition 6.9) for which the
algorithm can perform list-of-� decoding, for some parameter �. We will then
describe appropriate choices for the various parameters in the algorithm to
obtain results for the most interesting cases for us: decoding with constant-
sized lists, and decoding with polynomial-sized lists.

Definition 6.5 (weighted degree). For non-negative weights w1, w2, the
(w1, w2)-weighted degree of the monomial xiyj is defined to be iw1 + jw2. For
a bivariate polynomial Q(x, y), and non-negative weights w1, w2, the (w1, w2)-
weighted degree of Q, denoted (w1, w2)-wt-deg(Q), is the maximum over all
monomials with non-zero coefficients in Q of the (w1, w2)-weighted degree of
the monomial.

We now describe our algorithm for the polynomial reconstruction problem.

Algorithm Poly-Reconstruct:
Inputs: n, k, t, {(xi, yi)}n

i=1, where xi, yi ∈ F.

Step 0: Compute parameters r, l which satisfy

rt > l and n

(
r + 1

2

)
<
(⌊ l

k

⌋
+ 1

)(
l + 1− k

2

⌊
l

k

⌋)
. (6.1)

Step 1: Find a polynomial Q(x, y) such that (1, k)-wt-deg(Q) ≤ l, i.e., find
values (in F) for its coefficients {qj1j2}j1,j2≥0:j1+kj2≤l such that the fol-
lowing conditions hold:3

1. At least one qj1,j2 is non-zero
2. For every i ∈ [n], if Q(i) is the shift of Q to (xi, yi), then all coefficients

of Q(i) of total degree less than r are 0. More specifically:

∀i ∈ [n], ∀ j1, j2 ≥ 0, s.t. j1 + j2 < r,

q
(i)
j1j2

def=
∑

j′1≥j1

∑
j′2≥j2

(
j′1
j1

)(
j′2
j2

)
qj′1,j′2x

j′1−j1
i y

j′2−j2
i = 0.

Step 2: Find all polynomials p ∈ F[X] of degree at most k such that p is a
root of Q (i.e., y − p(x) is a factor of Q(x, y)). For each such polynomial
p check if p(xi) = yi for at least t values of i ∈ [n], and if so, include p in
output list.

End Poly-Reconstruct
3We will prove shortly that such a polynomial exists for r, l as in (6.1).

6.2 Reed-Solomon Codes 103

We will present an analysis of the runtime of the algorithm in Section 6.2.7
along with pointers to the relevant papers. For now, we quickly note that the
algorithm can definitely be implemented in polynomial time. This follows
since the first step can be accomplished by solving a homogeneous linear
system, a task that can be performed in cubic time by Gaussian elimination.
The second step can be performed in polynomial time by appealing to a
bivariate polynomial factorization algorithm (cf. [116, 75, 124]), though the
special nature of the problem in this setting allows for faster solutions, which
will be discussed in Section 6.2.7.

6.2.4 Correctness of the Algorithm

We now prove the correctness of our algorithm assuming the parameters
picked by the algorithm satisfy certain constraints. In Section 6.2.6, we will
indicate appropriate settings of parameters for which the algorithm achieves
useful list decoding performance. In Lemmas 6.6 and 6.7, Q can be any poly-
nomial returned in Step 1 of the algorithm.

Lemma 6.6. If (xi, yi) is an input point and p is any polynomial such that
yi = p(xi), then (x− xi)r divides g(x) def= Q(x, p(x)).

Proof: Let p1(x) be the polynomial given by p1(x) = p(x + xi)− yi. Notice
that p1(0) = 0. Hence p1(x) = xp2(x), for some polynomial p2(x). Now,
consider g1(x) def= Q(i)(x, p1(x)). We first argue that g1(x − xi) = g(x). To
see this, observe that

g(x) = Q(x, p(x)) = Q(i)(x − xi, p(x)− yi) =

Q(i)(x − xi, p1(x− xi)) = g1(x− xi).

Now, by construction, Q(i) has no coefficients of total degree less than r. Thus
by substituting y = xp2(x) for y, we are left with a polynomial g1 such that
xr divides g1(x). Shifting back we have (x − xi)r divides g1(x − xi) = g(x).
�

Lemma 6.7. If p(x) is a polynomial of degree at most k such that yi = p(xi)
for at least t values of i ∈ [n] and rt > l, then y − p(x) divides Q(x, y), or
equivalently, Q(x, p(x)) ≡ 0.

Proof: Consider the polynomial g(x) = Q(x, p(x)). By the definition of
weighted degree, and the fact that the (1, k)-weighted degree of Q is at most
l, we have that g is a polynomial of degree at most l. By Lemma 6.6, for
every i such that yi = p(xi), we know that (x − xi)r divides g(x). Thus if S
is the set of i such that yi = p(xi), then

∏
i∈S(x− xi)r divides g(x). (Notice

in particular that xi
= xj for any pair i
= j ∈ S, since then we would have
(xi, yi) = (xi, p(xi)) = (xj , p(xj)) = (xj , yj).) By the hypothesis |S| ≥ t,

104 6 Reed-Solomon and Algebraic-Geometric Codes

and hence we have a polynomial of degree at least rt dividing g which is a
polynomial of degree at most l < rt. This can happen only if g ≡ 0. Thus we
find that p(x) is a root of Q(x, y) (where the latter is viewed as a polynomial
in y with coefficients from the ring of polynomials in x). By the division al-
gorithm, this implies that y − p(x) divides Q(x, y). �

All that needs to be shown now is that a polynomial Q as sought for in Step
1 does exist. The lemma below shows this conditionally.

Lemma 6.8. If

n

(
r + 1

2

)
<
(⌊ l

k

⌋
+ 1

)(
l + 1− k

2

⌊
l

k

⌋)
, (6.2)

then a polynomial Q as sought in Step 1 does exist (and can be found in
polynomial time by solving a linear system). Furthermore, Condition (6.2) is
met if

n

(
r + 1

2

)
<

l(l + 2)
2k

. (6.3)

Proof: Notice that the computational task in Step 1 is that of solving a
homogeneous linear system. A non-trivial solution exists as long as the rank
of the system is strictly smaller than the number of unknowns. The rank
of the system may be bounded from above by the number of constraints,
which is n

(
r+1
2

)
. The number of unknowns equals the number of monomials

of (1, k)-weighted degree at most l and this number equals

� l
k�∑

j2=0

l−kj2∑
j1=0

1 =
� l

k�∑
j2=0

(l + 1− kj2)

= (l + 1)
(⌊

l

k

⌋
+ 1

)
− k

2

⌊
l

k

⌋(⌊
l

k

⌋
+ 1

)
(6.4)

which implies the claimed result. Also the quantity (6.4) is clearly at least(⌊
l

k

⌋
+ 1

)(
l + 1− l

2

)
≥ l

k
· l + 2

2

which implies the second claim as well. �
We now record the main result of this section which quantifies the perfor-
mance of the algorithm as a function of the parameters r, t, l.

Proposition 6.9. Let parameters r, t, l satisfy rt > l and Condition 6.3, or
even the weaker Condition 6.2. Then, given any set of n pairs (xi, yi) ∈ F2,
the number of degree k polynomials p that satisfy p(xi) = yi for at least t
values of i is at most �l/k�. Moreover the algorithm Poly-Reconstruct with
choice of parameters r, t, l, finds and outputs the list of all such polynomials.

6.2 Reed-Solomon Codes 105

Proof: The correctness of the algorithm, i.e., the fact that it outputs all the
relevant polynomials that satisfy p(xi) = yi for at least t values of i, follows
from Lemmas 6.7 and 6.8. The claimed bound on the number of polynomials
follows from the fact that for any such polynomial p, (y − p(x)) must be a
factor of Q(x, y). The y-degree of Q is at most �l/k� since its (1, k)-weighted
degree is at most l (by the choice of Q). The number of factors (y − p(x)) of
Q(x, y) is clearly at most the y-degree of Q, and the result follows. �

6.2.5 A “Geometric” Example

We now present examples that geometrically illustrate how the algorithm
works. This will also bring out the necessity for using multiplicities (i.e., the
parameter r). The readers who already obtained enough intuition from the
analysis of the previous subsection can skip to Section 6.2.6.

To present the examples, we work over the field R of real numbers. The
collection of pairs {(xi, yi) : 1 ≤ i ≤ n} then just form a collection of n
points in the plane. We will illustrate how the algorithm finds all polynomials
of degree one, or in other words lines, that pass through at least a certain
number t of the n points. In other words, throughout this section we fix the
degree parameter k = 1.

Example 1: For the first example, we take n = 14 and t = 5. The 14 points
on the plane are as in Figure 6.2.

Fig. 6.2. Example 1: The set of 14 input points. We assume that the center-most
point is the origin and assume a suitable scaling of the other points.

We want to find all lines that pass through at least 5 of the above 14
points. Since k = 1, the (1, k)-weighted degree of a bivariate polynomial is
simply its total degree. The first step of the algorithm must fit a non-zero
bivariate polynomial Q(x, y) of total degree l through these 14 points. Let
us pick r = 1, i.e., we only insist the polynomial Q must have each (xi, yi)

106 6 Reed-Solomon and Algebraic-Geometric Codes

as a “simple” zero. This gives one constraint for each of the 14 points. Since
there are 14 linear constraints in all on the coefficients of the polynomial Q,
we can fit a polynomial Q of total degree l = 4 (since such a polynomial has(
4+2
2

)
= 15 > 14 coefficients) — this corresponds to Lemma 6.8 applied to

this example.
A degree 4 polynomial that passes through the above 14 points is

Q(x, y) = y4 − x4 − y2 + x2. To see this pictorially, let us plot the locus
of all points on the plane where Q has zeroes. This gives Figure 6.3 below.

Fig. 6.3. A degree 4 fit through the 14 points. The curve is the locus: y4 − x4 −
y2 + x2 = 0. The two lines in the picture stretch to infinity, of course.

Note that the two relevant lines that pass through at least 5 points emerge
in the picture (these are the dashed lines in the picture). Algebraically, this
corresponds to the fact that Q(x, y) factors as Q(x, y) = (x2 + y2 − 1)(y +
x)(y − x), and the last two factors correspond to the two lines that are the
solutions. The fact that the above works correctly, i.e., the fact that the
relevant lines must be factors of any degree 4 fit through the 14 points, is a
consequence of Lemma 6.7 applied to this example (with the choice l = 4,
r = 1 and t = 5).

Example 2: For the second example, we take n = 11 and t = 4. The 11
points on the plane are as in Figure 6.4. We want to find all lines that pass
through at least 4 of the above 11 points. Once again, as in Example 1, we can
try and fit a non-zero degree 4 polynomial through these 11 points (degree 3
gives only

(
5
2

)
= 10 coefficients, and cannot in general interpolate an arbitrary

set of 11 points). However, as we will shortly prove, this strategy, no matter
which degree 4 polynomial we fit through the 11 points, will not work for this
example.

Here is where our general multiplicity based approach kicks in. Specifi-
cally, we will now try and fit a polynomial Q(x, y) that has each of the 11

6.2 Reed-Solomon Codes 107

Fig. 6.4. Example 2: The set of 11 input points.

input points as a zero of multiplicity 2. That is, we set the parameter r = 2.
Now Lemma 6.8 (applied with n = 11, r = 2) implies that there is a non-zero
polynomial Q of degree l = 7 that has the required property (since Condi-
tion (6.2) is satisfied for these values of n, r, l). Figure 6.5 below is a plot of
the locus of zeroes of one such polynomial. Note that the polynomial is a

Fig. 6.5. A degree 7 polynomial that passes through each of the 11 points twice

product of seven degree one polynomials (i.e., lines) and hence has degree 7.
Moreover, from the picture, it is “clear” that the curve passes through each
of the 11 input points twice. Also, the five lines that pass through 4 or more
of the points all emerge in the picture (these are the dashed lines). The fact
that the relevant lines must be factors of any degree 7 fit that passes through

108 6 Reed-Solomon and Algebraic-Geometric Codes

each of the 11 points twice, is a consequence of Lemma 6.7 applied to this
example (with the choice l = 7, r = 2 and t = 4).

Note that since there are five lines that are solutions, this proves that
the same approach as in Example 1 (based on fitting a degree 4 bivariate
polynomial) will not work for this example. This is because one cannot have
five distinct lines all be factors of a degree 4 plane curve. This shows that the
multiplicity based approach is necessary for this example.

6.2.6 Results for Specific List Sizes

Decoding with Constant-Sized Lists Suppose we wish to use algorithm
Poly-Reconstruct to do list-of-L decoding, that is, perform polynomial re-
construction with the guarantee that the list of polynomials that have to be
output will be of size at most L. We now indicate the choice of parameters in
the algorithm to correct a maximum fraction of errors under this constraint.

Theorem 6.10 (List-of-L decoding). Consider the polynomial reconstruc-
tion problem with inputs n, k, t and pairs {(xi, yi)}, 1 ≤ i ≤ n. Subdivide (0, 1)
into L+1 intervals (ρj , ρj+1], 0 ≤ j ≤ L, where ρj = j(j+1)

L(L+1) . Let r = r(k/n),
1 ≤ r ≤ L + 1 be such that k/n ∈ (ρr−1, ρr]. Then provided

t >
r + 1

2(L + 1)
· n +

L

2r
· k , (6.5)

the number of solutions to the polynomial reconstruction problem is at most
L. Moreover, the algorithm Poly-Reconstruct, when it is run with suitable
parameters r, l, finds and outputs a list of size at most L that includes all
solution polynomials.

Proof: Since we want to insist that the algorithm Poly-Reconstruct outputs at
most L solutions, we will also add the condition that y-degree of Q, degy(Q),
equals L, in Step 1 of the algorithm. This will imply that Q has at most L
roots, and hence the algorithm will output at most L polynomials in Step 2.
Now, arguing as in Lemma 6.8, a non-zero polynomial Q with degy(Q) = L
and (1, k)-wt-deg(Q) ≤ l as sought in Step 1 will exist provided

(L + 1)
(
l + 1− Lk

2

)
> n

(
r + 1

2

)
. (6.6)

This condition can be satisfied for any r by choosing

l =
⌊

nr(r + 1)
2(L + 1)

+
kL

2

⌋
. (6.7)

Of course, since degy(Q) = L, we must have l ≥ (1, k)-wt-deg(Q) ≥ Lk.
This gives the condition k

n ≤ r(r+1)
L(L+1) on r. Let us pick r = r(k/n) to be the

6.2 Reed-Solomon Codes 109

smallest integer in the range 1 ≤ r ≤ L + 1 such that k/n ≤ r(r+1)
L(L+1) .

4 This is
exactly the choice of r specified in the statement of the theorem.

Now, as in Proposition 6.9, the algorithm Poly-Reconstruct succeeds in
finding a list of at most L polynomials which satisfy p(xi) = yi for at least t
values of i, provided t > l/r. This condition will be satisfied for our choice of
l from Equation (6.7) if

t >
n(r + 1)
2(L + 1)

+
kL

2r
.

Hence Algorithm Poly-Reconstruct performs correct list-of-L decoding as long
as the Condition (6.5) stated in the theorem is satisfied. �

Combinatorial implication for list decodability of Reed-Solomon
codes: The above result implies that an [n, k+1, n−k]q Reed-Solomon code
is (e, L)-list decodable as long as

e < n ·
(
1− r + 1

2(L + 1)
− L

2r

k

n

)
, (6.8)

(where r is defined to be the least integer in the range 1 ≤ r ≤ L + 1 for
which k

n ≤ r(r+1)
L(L+1)). Note that in the limit of L → ∞, this converges to

e/n < 1 −√
k/n (since we will have r/L � √

k/n), which is the Johnson
bound on list decoding radius from Corollary 3.3. But for a finite L, based on
the bounds of Corollary 3.3 from Chapter 3, the Johnson radius for list-of-L
decoding for MDS codes (like Reed-Solomon codes) is (roughly)

e/n = 1−
√

k

n
+
(
1− k

n

)
· 1
L

. (6.9)

It can be verified that, at least for some range of parameters (especially for
low values of k/n), the bound of Equation (6.8) is stronger than that of
Equation (6.9). As a simple illustration, let us consider the case L = 2. For
L = 2, the bound (6.8) implies that for every k/n < 1/3, there are at most
two codewords in every Hamming ball of radius γn for some γ > 1

2 ·(1−k/n),
i.e., greater than half the relative distance (in fact we have γ = 2

3 − k
n in this

case). The Johnson bound from Equation (6.9) on the other hand does not
show that list-of-2 decoding is possible beyond half the minimum distance
for any value of k/n.

4The claim of the theorem actually holds for any value of r in the range 1 ≤ r ≤
L. For values of r greater than or smaller than the one we pick the algorithm will
be able to tolerate fewer errors than that achieved by this particular choice of r.
Essentially, the plot of the maximum number of errors corrected by the algorithm
for each value of r is a straight line, and the best performance is attained by taking
the upper envelope of all these straight lines. The value of r we pick is such that
the r’th line forms the upper envelope for the given value of k/n.

110 6 Reed-Solomon and Algebraic-Geometric Codes

Hence, for the special case of Reed-Solomon codes we are able to prove, via
an algebraic method, stronger combinatorial results than the generic Johnson
bound on list decodability, and curiously the algebraic proof is also “algorith-
mic” and demonstrates how to recover the list of codewords efficiently.

Recent Improvement to Johnson bound: Subsequent to our work [88],
Ruckenstein and Roth [156] proved that the bound of Equation (6.8), with
the quantity n−d replacing k, is a valid bound on list-of-L decoding radius for
every code of blocklength n and distance d. This removes the above-mentioned
discrepancy between the general Johnson bound (6.9) from Chapter 3 and
the bound obtained above for Reed-Solomon codes.

Decoding with Polynomial-Sized Lists We now allow the list size to be
a polynomial (actually, quadratic) in n, and pick parameters to squeeze out
the maximum error-correction capability of the algorithm Poly-Reconstruct.
In Step 0 of the algorithm, pick parameters r, l such that

r
def= 1 +

⌊
kn +

√
k2n2 + 4(t2 − kn)
2(t2 − kn)

⌋
(6.10)

l
def= rt− 1 (6.11)

Lemma 6.11. If n, k, t satisfy t2 > kn, then for the choice of r, l made in
Equations (6.10) and (6.11) above, the conditions n

(
r+1
2

)
< l(l+2)

2k and rt > l
both hold.

Proof: Since l
def= rt − 1, rt > l certainly holds. Using l = rt − 1, we now

need to satisfy the constraint

n

(
r + 1

2

)
<

(rt − 1)(rt + 1)
2k

which simplifies to r2t2 − 1 > kn(r2 + r) or, equivalently,

r2(t2 − kn)− knr − 1 > 0.

Hence it suffices to pick r to be an integer greater than the larger root of the
above quadratic, and therefore picking

r = 1 +

⌊
kn +

√
k2n2 + 4(t2 − kn)
2(t2 − kn)

⌋

suffices, and this is exactly the choice made in Equation (6.10). �

Theorem 6.12. Algorithm Poly-Reconstruct on inputs n, k, t and the points
{(xi, yi) : 1 ≤ i ≤ n}, correctly solves the polynomial reconstruction problem
provided t >

√
kn, for the choice of parameters r, l as in Equations (6.10)

and (6.11). Moreover, the size of the list the algorithm outputs is at most
O(
√

kn3) (which is in turn O(n2)).

6.2 Reed-Solomon Codes 111

Proof: The correctness of the algorithm for this choice of parameters follows
from Proposition 6.9 and Lemma 6.11. It remains to prove the claim about the
number of codewords. By Lemma 6.7, the number M of such codewords is at
most the degree degy(Q) of the bivariate polynomial Q in y. Since the (1, k)-
weighted degree of Q is at most l, degy(Q) ≤ �l/k�. Choosing t = �√kn�+ 1
(which corresponds to the largest permissible value of the radius e), we have,
by the choice of l, that

M = O(l/k) = O(rt/k) = O(knt/k) = O(
√

kn3) ,

as desired. �

6.2.7 Runtime of the Algorithm

We now present a runtime analysis of algorithm Poly-Reconstruct and prove
that it can be implemented to run efficiently (in time which is a reasonably
slowly growing polynomial in n).

As was briefly discussed at the end of Section 6.2.3, the algorithm can def-
initely be implemented in polynomial time. However, we now give pointers
to results which demonstrate much faster implementations of the decoding
algorithm. In particular, these imply Õ(n2) def= O(n2 logO(1) n) time imple-
mentations of Algorithm Poly-Reconstruct for list decoding Reed-Solomon
codes over poly(n)-sized fields with constant-sized lists (the constant in the
big-Oh notation will depend polynomially on the size of the list).

Lemma 6.13 ([147]). For the algorithm Poly-Reconstruct with parameters
r, l over a field F, Step 1 can be implemented in O(n2r5) operations over F.

We refer the reader to [147, Section 6] for a description of the above
implementation. Olshevsky and Shokrollahi [150] provide a different imple-
mentation using O(n2r4 logq r · l/k) field operations over Fq.

Lemma 6.14 ([155]). The root finding step (Step 2) of Algorithm Poly-
Reconstruct over a field of size q can be implemented by a randomized algo-
rithm that uses O((nl + l2/k · log q) log2(l/k)) field operations over Fq.

We refer the reader to [155, Section 5] for a description of the imple-
mentation of the root-finding step. It is shown there that given a bivariate
polynomial Q(x, y) of y-degree at most b, one can find all degree k poly-
nomials p ∈ Fq[x] that satisfy Q(x, p(x)) ≡ 0 using O(kb log2 b(n + b log q))
operations over Fq. For the application to Algorithm Poly-Reconstruct, we
have b = �l/k�. Gao and Shokrollahi [63] give another algorithm to solve
the problem in O(k2b3) time assuming log q ≤ k. Augot and Pecquet [18]
present a deterministic procedure to solve Step 2 that uses O(n2 log n) field
operations — their approach avoids the step of finding roots of a univari-
ate polynomials over the field (for which the fast, strongly polynomial time

112 6 Reed-Solomon and Algebraic-Geometric Codes

solutions are randomized) and employs a Hensel lifting procedure that can
be launched from a direct inspection of the symbols of the received word.
However, the decoding algorithm in [18] only works for t >

√
2nk and not

for the improvement to Sudan’s algorithm presented here. For the interesting
setting of parameters, the complexity of Step 1 dominates the runtime of the
algorithm. When the field size q is very large, the bound for Step 2 from
Lemma 6.14 could dominate.5

The interested reader can find the details in the above references. Below,
we record the time bounds for the entire polynomial reconstruction algorithm.
In the next section, we will record the results for list decoding Reed-Solomon
codes along with an explicit runtime bound. Note that the result below simply
presents the results of Theorem 6.10 and Theorem 6.12 with explicit runtime
bounds that follow from Lemmas 6.13 and 6.14. Actually, slightly better
bounds can be stated by carefully adding the bounds for Steps 1 and 2 of the
algorithm, but we prefer to state simpler and reasonably tight bounds below.

Proposition 6.15. The algorithm Poly-Reconstruct over Fq with inputs
n, k, t can be implemented to run in randomized time:

(i) O(n2L5 log2 q logO(1) log q) to find a list of size at most L that includes
all polynomials p that satisfy p(xi) = yi for at least t values of i, provided
t > r+1

2(L+1) ·n + L
2r · k. Here the parameter r is defined to be the smallest

integer in the range 1 ≤ r ≤ L for which k
n ≤ r(r+1)

L(L+1) .

(ii) O(k5n7 log2 q logO(1) log q) to find a list of all polynomials p that satisfy
p(xi) = yi for at least t values of i, provided t >

√
kn.

(iii) O(n2ε−5 log2 q logO(1) log q) to find a list of size at most O(1
ε

√
n
k) that

includes all polynomials p that satisfy p(xi) = yi for at least t values of
i, provided t ≥√

(1 + ε)kn.

Proof:
For Part (i), for list-of-L decoding we have r ≤ L+1,6 and l = O(kL). Ap-

plying Lemmas 6.13 and 6.14, the complexity of Step 1 is O(n2L5) field opera-
tions, and that of Step 2 is O((nkL+kL2 log q) log2 L) = O(n2L2 log2 L log q)
field operations. The overall complexity is therefore certainly at most
O(n2L5 log q) operations over Fq.

For Part (ii), for decoding under the condition t >
√

kn, we have r =
O(kn) (from Equation 6.10), and l = O(tr) = O(kn2). The complexity of Step
1 is O(n7k5) field operations and that of Step 2 is at most O(kn4 log2 n log q)

5Subsequent of the publication of the initial version of this work, Alekhnovich [4]
managed to give a near-linear time, i.e., n logO(1) n time, implementation of our
Reed-Solomon list decoding algorithm.

6For large L, we have r/L � √
k/n and we can use this to get a slightly better

runtime bound. But in later applications of this result we will be mostly interested
in the situation when k/n = Ω(1), and for such a situation the improvement is only
by a constant factor.

6.2 Reed-Solomon Codes 113

field operations, for an overall complexity of O(n7k5 log q) operations over
Fq.

For Part (iii), for decoding under the condition t ≥√
(1 + ε)kn, we have

r = O(1/ε) (again from Equation 6.10), and l = O(rt) = O(ε−1
√

kn). Since
the list size output by the polynomial reconstruction algorithm is at most
�l/k� = O(ε−1

√
n/k). The complexity of Step 1 is O(n2ε−5) field operations

and that of Step 2 is at most O(n2ε−2 log q) field operations, for an overall
complexity of O(n2ε−5 log q) operations over Fq.

Since field operations over Fq can be implemented in O(log q logO(1) log q)
time, the time bounds claimed in the proposition follow. �

6.2.8 Main Theorems About Reed-Solomon List Decoding

So far we stated our results for the polynomial reconstruction problem. Below
we state the result specialized to Reed-Solomon decoding.

Theorem 6.16. [Main Result on Reed-Solomon Decoding]

(i) For every integer L ≥ 1, an [n, k + 1, n− k]q Reed-Solomon code can be
list decoded to a radius of e for e < n − r+1

2(L+1) · n − L
2r · k using lists

of size L in O(n2L5 log2 q logO(1) log q) time. Here r is defined to be the
smallest integer in the range 1 ≤ r ≤ L for which k

n ≤ r(r+1)
L(L+1) .

(ii) An [n, k + 1, n− k]q Reed-Solomon code can be list decoded to a radius
of e for e < n−√kn in O(n12 log2 q logO(1) log q) time using lists of size
O(n2).

(iii) If e ≤ n − √
(1 + ε)kn, then one can perform list decoding in

O(n2ε−5 log2 q logO(1) log q) time using lists of size O(ε−1
√

n/k).

Proof: The statement (i) follows immediately from Proposition 6.15, Part (i),
since the Reed-Solomon decoding problem is a special form of the polynomial
reconstruction problem (cf. Proposition 6.4). Similarly, the statements (ii)
and (iii) follow from Parts (ii) and (iii) of Proposition 6.15. �

“Tightness” of the Performance Bound It is interesting to contrast
the number of errors corrected by the above result with results in the spirit
of Chapter 4 that show combinatorial limits to list decodability by demon-
strating a received word with a large number of codewords within a certain
Hamming distance from it. We will need such results specialized to the case
of Reed-Solomon codes if we wish to understand the maximum number of
errors for which a Reed-Solomon code can be list decoded using lists of a
certain size. Since we decode up to the Johnson radius, the performance of
our algorithm will be the best possible if the Johnson bound is tight for
Reed-Solomon codes. However, we do not know this result. (Our results in
Chapter 4 proved the tightness of the Johnson bound for some “contrived”
binary code construction, but not for Reed-Solomon codes.)

114 6 Reed-Solomon and Algebraic-Geometric Codes

Justesen and Hφholdt [113] demonstrate that for certain Reed-Solomon
codes, there exist Hamming balls of radius close to (n−√kn) with Ω(n) code-
words. This provides strong evidence to the tightness of the Johnson bound
(and the number of errors corrected by our algorithm) for list decoding Reed-
Solomon codes with constant-sized lists. This result, however, applies only
to certain values of the rate. They also obtain results that demonstrate the
tightness of the exact bound of Theorem 6.16 for list-of-L decoding for certain
values of the rate (namely the values j(j+1)

L(L+1) for 0 ≤ j ≤ L). Ruckenstein and
Roth [156] extend this result to a wider range of rates — in particular, they
demonstrate the tightness of Theorem 6.16 for all values of rate in the ranges
[0, 2

L(L+1)] and [L−1
L+1 , 1]. These bounds are of interest in that they hint at a

potential limitation to further improvements to the list decoding approach,
and they provide good evidence to the tightness of some of our performance
bounds. Ruckenstein and Roth [156] also demonstrate that for certain setting
of parameters, one cannot realize configurations exhibiting the tightness of
the list-of-L decoding bound of Theorem 6.16, in a Reed-Solomon code. Thus
a precise understanding of the combinatorics of list decoding Reed-Solomon
codes is still lacking and the problem certainly deserves further study.

6.2.9 Some Further Consequences

We now describe some other easy consequences and extensions of the poly-
nomial reconstruction algorithm of Section 6.2.3. The first three classes of
results are just straightforward applications of the polynomial reconstruction
algorithm. The fourth result, described in the next section, revisits the curve-
fitting algorithm to get a solution to a weighted polynomial reconstruction
problem.

Alternant Codes We now describe a family of codes called alternant codes.
Alternant codes were first defined and studied by Helgert [96]. A good discus-
sion of alternant codes appears in [132, Chap. 12]. Alternant codes are a very
broad class of codes which among other things include Reed-Solomon codes
and BCH codes. BCH codes (short for Bose-Chaudhuri-Hocquenghem codes)
are an extremely useful and well-studied family of codes, first introduced by
[33, 98] (see [132, Chap. 9] for a thorough discussion of BCH codes). They
possess several of the nice algebraic properties of Reed-Solomon codes, but
in addition have the advantage that codes with large blocklengths can be
defined even over a fixed, small alphabet (unlike Reed-Solomon codes which
require an alphabet size at least as large as the blocklength).

Definition 6.17 (Alternant Codes ([132], §12.2)). For positive inte-
gers m, k0, n, prime power q, the field F = GF(qm), a vector α of dis-
tinct elements α1, . . . , αn ∈ GF(qm), and a vector v of nonzero elements
v1, . . . , vn ∈ GF(qm), the q-ary alternant code Aq,n,k0,α,v comprises of those
codewords of the Generalized Reed-Solomon code GRSF,n,k0,α,v that have all
components from GF(q).

6.2 Reed-Solomon Codes 115

Since the Generalized Reed-Solomon code has distance exactly n−k0+1, it
follows that the respective alternant code, being a subcode of the Generalized
Reed-Solomon code, has distance at least n−k0+1. We term this the designed
distance d′ = n− k0 + 1 of the alternant code. The actual rate and distance
of the code are harder to determine. The rate lies somewhere between n −
m(n− k0) and k0, and the distance d lies between d′ and md′.

The decoding algorithm of the previous section can be used to decode
alternant codes as well. Given a received word 〈r1, . . . , rn〉 ∈ GF(q)n, we use
as input to the polynomial reconstruction problem the pairs {(xi, yi)}n

i=1,
where xi = αi and yi = ri/vi are elements of GF(qm) (here we are viewing
each element ri ∈ GF(q) as an element of GF(qm)). The list of polynomials
output includes all possible codewords from the alternant code. Thus the
decoding algorithm for the earlier section is really a decoding algorithm for
alternant codes as well, with the caveat that its performance can only be
compared with the designed distance, rather than the actual distance. The
following theorem summarizes the scope of the decoding algorithm.

Theorem 6.18. Let A be an [n, k + 1, d]q alternant code with designed dis-
tance d′ (and thus satisfying d

m ≤ d′ ≤ d). Then there exists a polynomial
time list decoding algorithm for A decoding up to e < n−√n(n− d′) errors.

Discussion: We note that decoding algorithms for alternant codes given in
classical texts like [132, 23] seem to correct only up to half the designed
distance. Hence the above theorem improves upon those algorithms for every
value of the designed distance. Since alternant codes include BCH codes as a
special case, in particular we also have an algorithm to decode BCH codes up
to the above radius. However, BCH codes can be defined over small alphabets,
even over GF(2), and then the above bound (n −√

n(n− d′)) which does
account for the alphabet size is quite far from the Johnson radius (which

for binary codes is n−
√

n(n−2d′)
2 , from Theorem 3.2 of Chapter 3). But as

noted by [121] it is possible to use the soft decoding algorithm that we will
shortly discuss in Section 6.2.10 to decode q-ary BCH codes up to the q-ary
Johnson radius. A similar situation arises with algebraic-geometric codes,
and in Section 6.3.8 we will discuss how to use soft decoding to decode them
up to the q-ary Johnson radius. The same argument will also apply to BCH
codes, by using the soft decoding algorithm from Theorem 6.26 instead of
the soft decoding algorithm for decoding AG-codes from Theorem 6.41.

Decoding with Uncertain Receptions Consider the situation when, in-
stead of receiving a single word y = 〈y1, y2, . . . , yn〉, for each i ∈ [n], we
receive a list of � possibilities yi1, yi2, . . . , yi� such that one of them is the
correct symbol (but we do not know which one). Once again, as in normal
list decoding, we wish to find out all possible codewords which could have
been possibly transmitted, except that now the guarantee given to us is not in
terms of the number of errors effected, but in terms of the maximum number

116 6 Reed-Solomon and Algebraic-Geometric Codes

of uncertain possibilities at each position of the received word. Let us call
this problem decoding from uncertain receptions. In this situation, we have
the following result.

Theorem 6.19. List decoding from uncertain receptions on a [n, k + 1, d =
n−k]q Reed-Solomon code can be done in polynomial time provided the num-
ber of “uncertain possibilities” l at each position i ∈ [n] is (strictly) less than
n/k.

Proof: Apply the solution to the polynomial reconstruction problem with
input being the set of pairs {(xi, yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ �}, the goal being
to find all degree k polynomials p such that p(xi) ∈ {yi1, . . . , yi�} for every
i, 1 ≤ i ≤ n. Applying Proposition 6.15, Part (ii), with the total number of
pairs N = n� and t = n, we get that we can solve this problem in polynomial
time provided n >

√
kn�, or if � < n/k. �

We can also consider the situation when given lists Li of size � at each
position of the code, we wish to find all Reed-Solomon codewords that agree
with an element of the list Li for at least a fraction α of the positions i.7 The
polynomial reconstruction problem still captures this problem, and below we
state a version of the result that follows from Part (iii) of Proposition 6.15.

Theorem 6.20. Let C be an [n, k + 1, n − k]q Reed-Solomon code. Sup-
pose we are given lists Li ⊆ Fq such that the average list size equals �,
i.e.,

∑
i |Li| = �n. Then, there are at most O(γ−1

√
n�/k) codewords of

C which agree with an element of Li for at least αn values of i, provided
α >

√
(1 + γ)k�/n. Moreover, the list of all such codewords can be found in

randomized O(n2�2γ−5 log2 q logO(1) log q) time.

We can obtain a deterministic time version of the above result using the
result of Augot and Pecquet [18].

Theorem 6.21. Let C be an [n, k + 1, n − k]q Reed-Solomon code of rate
r. Suppose we are given lists Li ⊆ Fq such that the average list size
equals �, i.e.,

∑
i |Li| = �n. Then, there are at most

√
2n�/k codewords

of C which agree with an element of Li for at least αn values of i,
provided α >

√
2k�/n. Moreover, the list of all such codewords can be

found deterministically using O(n2�2r−O(1) log(n�)) operations over Fq, or
in O(n2�2r−O(1) log(n�) log q logO(1) log q) time. (For constant rate, the run-
time equals O((n�)2 log(n�) log q logO(1) log q).)

7This model of decoding will be formally defined and called list recovering in
Chapter 9, where we will study combinatorial aspects of codes with good list re-
coverability, and will also make use of the list recovering property of Reed-Solomon
codes.

6.2 Reed-Solomon Codes 117

The above versions of the result and the soft decoding algorithm from
Proposition 6.26 to be discussed shortly are in fact the main forms of our
decoding results for Reed-Solomon codes that will be used repeatedly in later
chapters.

Errors and Erasures Decoding The algorithm of Section 6.2.3 is also
capable of dealing with other notions of corruption of information. A much
weaker notion of corruption than an error in data transmission is that of an
“erasure”. Here a transmitted symbol is either simply “lost” or received in
obviously corrupted shape (so we might as well declare it erased). We now
note that the decoding algorithm of Section 6.2.3 naturally handles the case
when there are both errors and erasures. Suppose n symbols were transmitted
and n′ ≤ n were received and s = n−n′ symbols got erased. (We stress that
the problem definition specifies that the receiver knows which symbols are
erased.) This problem just reduces to a polynomial reconstruction problem
on n′ points. An application of Proposition 6.15 yields that e errors can be
corrected provided e < n′ −√

n′k. Thus we get:

Theorem 6.22. The list decoding problem for [n, k+1, n−k]q Reed-Solomon
codes allowing for e errors and s erasures can be solved in polynomial time,
provided e + s < n−√

(n− s)k.

The classical results of this nature show that one can solve the decoding
problem if 2e + s < n− k. To compare the two results we restate them. The
classical result can be rephrased as

n− (s + e) >
n− s + k

2
,

while our result requires that

n− (s + e) >
√

(n− s)k.

By the Arithmetic mean vs. Geometric mean inequality it is clear that the
second condition holds whenever the first one holds.

6.2.10 Weighted Polynomial Reconstruction and Soft Decoding of
RS Codes

Soft Decoding: The Context Moving on to a more general situation that
includes both the errors-and-erasures model and the model of decoding with
uncertain receptions from the previous sections, we now consider the case
where the received symbol looks like a “combination” of several (or even, all)
possible field elements, with varying “degrees of confidence”. This model is
referred to in the literature as soft-decision decoding (or simply, soft decoding),
as opposed to “hard decoding” with a fixed received word which has been the
object of study so far. Under soft decoding the received “word” is really

118 6 Reed-Solomon and Algebraic-Geometric Codes

an n × q-matrix R = {rij} of non-negative rational numbers, with an entry
corresponding to each codeword position and each symbol of the alphabet (we
take the alphabet to be [q]). The entry rij indicates the weight with which
the i’th transmitted symbol may be taken to be j.8 Exactly how to set these
weights can itself be a non-trivial task depending on the specific code and
channel under question. We do not address this issue here, and just provide a
“back-end” soft decoder for Reed-Solomon codes that makes good use of the
weights given the weight matrix R as input. Koetter and Vardy [121] address
the question of how to assign weights in order to get good performance from
soft decoding for several channel models. We also point to their work for
further discussion and pointers relating to soft decoding.

The soft decoding model is quite general and it captures all the previ-
ously discussed noise models. The case of decoding from uncertain receptions
is captured by the case when rij = 1 for each field element in the list of “un-
certain possibilities”, and rij = 0 for each element not on this list. Similarly,
the i’th symbol being declared an erasure is captured by setting rij = 0 for
every field element j. The “errors only” (or hard-decision) case with received
word y = 〈y1, . . . , yn〉 is captured by ri,yi = 1 and rij = 0 for j ∈ [q] \ {yi}.

Given an input reliability matrix R, the goal of soft decoding for Reed-
Solomon codes would be to find all polynomials p that are “close” to this
R matrix. It is not totally clear what the best measure of “closeness” is.
One natural measure is to measure the closeness of a polynomial p to R by
the quantity S(p, R) =

∑n
i=1 ri,p(xi) (here x1, x2, . . . , xn are n distinct field

elements that define the Reed-Solomon encoding of a polynomial p). The holy
grail in this setting is maximum likelihood soft-decision decoding, where the
goal is to find the polynomial p that maximizes S(p, R). This turns out to be
a prohibitively difficult algorithmic task, so one studies the bounded distance
soft decoding problem. This problem reduces to the problem of finding a list
of all polynomials p such that S(p, R) is at least a certain threshold.

In what follows, we provide a polynomial time bounded distance soft
decoding algorithm for Reed-Solomon codes. For a matrix R as input, the
algorithm finds all degree k polynomials p such that S(p, R) is at least

√
k

times the L2 norm of the R matrix. We obtain our soft decoding algorithm
via a solution to a weighted generalization of the polynomial reconstruction
problem, which we define next.

Weighted Polynomial Reconstruction We first formally define the prob-
lem.

8In its most typical use, the soft information can be used to model situations
where the “received word” is itself returned by an earlier decoding stage — for
example that performed by a source decoder or an inner decoder in a concatenation
scheme. In such a case, the decoder can set the weights rij to somehow quantify
the confidence it has in its “vote” for the i’th symbol being equal to j.

6.2 Reed-Solomon Codes 119

Problem 6.23. (Weighted polynomial reconstruction)
Input: N distinct pairs {(x1, y1), . . . , (xN , yN)}, where each xi, yi ∈ F for
some field F;
N non-negative weights w1, . . . , wN ;
degree parameter k and agreement parameter W .
Output: All polynomials p of degree at most k which satisfy∑

i:p(xi)=yi

wi ≥ W .

Note: There is no requirement of distinctness on the various xi’s in the
above specification. This will be crucial to the application to soft decoding
algorithms for Reed-Solomon codes.

We now discuss how the algorithm Poly-Reconstruct can be modified to
solve the weighted polynomial reconstruction problem for the case when the
weights are non-negative integers. The basic idea is to use multiplicities at
the various points (xi, yi) in proportion to their weights, in the interpola-
tion step (Step 1 of the algorithm). Specifically, in Step 1, we would find a
polynomial Q which has a singularity of order wiρ at the point (xi, yi), for
a suitably large integer parameter ρ. Thus we would now have

∑n
i=1

(
ρwi+1

2

)
constraints. If a polynomial p passes through the points (xi, yi) for every
i ∈ S for some S ⊆ [n], then y − p(x) will appear as a factor of Q(x, y) pro-
vided

∑
i∈S ρwi is greater than (1, k)-wt-deg(Q). Also (1, k)-wt-deg(Q) must

be picked large enough such that Q has more coefficients than the number
of linear constraints it must satisfy (so that a non-zero Q with the required
properties will be guaranteed to exist). Optimizing over the weighted degree
of Q yields the following theorem – the proof is similar to Theorem 6.12.

Theorem 6.24. If the weights wi are non-negative integers, the weighted
polynomial reconstruction problem with parameters k, W over Fq can be solved
deterministically in time polynomial in the sum of wi’s and q, provided W >√

k
∑N

i=1 w2
i .

We now remove the requirement of integer weights and the pseudo-
polynomial dependence of the runtime on the wi’s (ideally we would like
the algorithm to run in time polynomial in the logarithm of the wi’s). Below
we note that with an ε degradation in performance, the algorithm can be im-
plemented to run in poly(N, 1/ε) time, even when the weights are arbitrary
rational numbers.

Lemma 6.25. For any tolerance parameter ε > 0, the weighted polynomial
reconstruction problem for N pairs {(xi, yi) ∈ F2

q} with associated non-
negative rational weights wi, degree parameter k and agreement parameter
W , can be solved deterministically in time polynomial in N , q and 1/ε, pro-
vided

120 6 Reed-Solomon and Algebraic-Geometric Codes

W >

√√√√k

N∑
i=1

w2
i + εwmax.

Proof: Assume without loss of generality that w1 ≤ w2 ≤ · · · ≤ wN . Pick
any large integer L ≥ N

ε , and form the integer weights w′
i = �Lwi/wN�. Since

wi ≤ wN for all i, the weights w′
i are all at most L. Therefore Theorem 6.24

implies that one can find, in poly(N, L) time, a list of all polynomials p of
degree less at most k that satisfy

∑
i:p(xi)=yi

w′
i >

√√√√k

N∑
i=1

w′2
i .

But since Lwi/wN ≥ w′
i > Lwi/wN − 1, this implies that in poly(N, L, q) =

poly(N, q, 1/ε) time, we can find all polynomials p of degree at most k that
satisfy the condition

∑
i:p(xi)=yi

(Lwi

wN
− 1

)
≥
√√√√k

N∑
i=1

(
Lwi

wN

)2

⇐=
∑

i:p(xi)=yi

wi ≥
√√√√k

N∑
i=1

w2
i +

NwN

L

⇐=
∑

i:p(xi)=yi

wi ≥
√√√√k

N∑
i=1

w2
i + εwN

(the last step follows since L ≥ N/ε). �

Reed-Solomon Soft Decoding: Main Result We also record the follow-
ing consequence for soft decoding of Reed-Solomon codes. Its proof follows
immediately from the above lemma. We will appeal to this result several times
when we discuss decoding algorithms for concatenated codes in Chapter 8.

Theorem 6.26 (Soft list decoding of Reed-Solomon codes). Con-
sider an [n, k + 1, n − k]q Reed-Solomon code with messages being polyno-
mials r over Fq of degree at most k. Let the encoding function be r �→
〈r(x1), r(x2), . . . , r(xn)〉 where x1, . . . , xn are distinct elements of Fq. Let
ε > 0 be an arbitrary constant. For each i ∈ [n] and α ∈ Fq, let wi,α be
a non-negative rational number. Then, there exists a deterministic algorithm
with runtime poly(n, q, 1/ε) that, when given as input the weights wi,α for
i ∈ [n] and α ∈ Fq, finds a list of all polynomials p ∈ Fq[x] of degree at most
k that satisfy

n∑
i=1

wi,p(xi) ≥
√√√√k

n∑
i=1

∑
α∈Fq

w2
i,α + ε max

i,α
wi,α . (6.12)

6.3 Algebraic-Geometric Codes 121

Finally, we would like to point out that, once again, the error-correction
performance of the above result approaches what is indicated to be possible
by the combinatorial bounds on list decodability, specifically the “weighted
Johnson bound” from Corollary 3.7 of Chapter 3.

Significance of Weighted Polynomial Reconstruction The weighted
polynomial reconstruction problem is at the heart of soft decoding algorithms
for Reed-Solomon codes (cf. [121]). It also plays a crucial role in decoding
certain concatenated codes, where the weights for Reed-Solomon decoding
are passed by the inner decoder [89, 145, 80, 78]. This will be discussed in
detail in Chapter 8 on concatenated codes. Thus, the weighted polynomial
reconstruction is a very useful subroutine that has found several applications
to list decoding, and we view it as one of the key contributions of our work.

Also, the basic algebraic technique behind weighted polynomial recon-
struction extends to more general codes than Reed-Solomon codes. In the
next section, we will present a list decoding algorithm for algebraic-geometric
codes, which then also generalizes to a weighted version (Section 6.3.7). In
the next chapter, we will present a soft list decoding algorithm for an even
broader class of codes called “ideal-based” codes.

6.3 Algebraic-Geometric Codes

We now describe the extension of our algorithm to the case of algebraic-
geometric codes. Our extension shows that the algebra of the previous section
extends to the case of algebraic function fields, yielding an approach to the
list decoding problem for algebraic-geometric codes. In particular it reduces
the decoding problem to some basis computations in an algebraic function
field and to a root-finding problem over the algebraic function field. However
neither of these tasks is known to be solvable efficiently given only the genera-
tor matrix of the algebraic-geometric code (or some such standard “minimal”
representation of a linear code). But we will show that by precomputing a
polynomial amount of additional information about the linear code and the
underlying algebraic structures, one can solve both parts efficiently.

6.3.1 Overview

Algebraic-geometric codes (henceforth AG-codes) are defined by evaluations
of “regular” functions at a set of points on a “nice” algebraic curve. These
were first defined by Goppa [74] in a seminal work, and are hence sometimes
also referred to as geometric Goppa codes. Their properties are proved us-
ing some deep facts from the theory of algebraic function fields. Before we
describe the generalization of the Reed-Solomon decoding algorithm to AG-
codes, in Section 6.3.2 we first develop the necessary definitions and prelim-
inaries on algebraic function fields, and formally define algebraic-geometric
codes.

122 6 Reed-Solomon and Algebraic-Geometric Codes

We then present our algorithm for list decoding modulo some algorithmic
assumptions about the underlying structures. Under these assumptions, our
algorithm yields an algorithm for list decoding which corrects up to e <
n−√

n(n− d∗) errors in a code of blocklength n and designed distance d∗.
(The earlier best result for list decoding AG-codes, due to [165], could correct
up to about n−√

2n(n− d∗) errors.)
Obtaining an efficient implementation of our decoding algorithm raises

some fundamental questions about how elements of an algebraic function
field are represented and manipulated. We next discuss these issues in detail
and demonstrate a representation of AG-codes under which the list decoding
algorithm can be implemented to run in polynomial time. This turns out
to be a non-standard representation (i.e., we do not how to implement the
algorithm in polynomial time given only the generator matrix or some such
“standard” representation of the code). However, the necessary representa-
tion of the code is succinct and is of size polynomial in the blocklength of the
code.

6.3.2 Algebraic-Geometric Codes: Preliminaries

We now discuss the main notions associated with the theory of algebraic
function fields that will be necessary for defining and studying algebraic-
geometric codes. The interested reader may find further details in [177, 64].
In the presentation below, we will assume familiarity with the basic notions
of field extensions, which can be found in any standard algebra text, eg.,
[14]. We note that the definition of AG-codes presented here is in line with
that of the standard texts (in particular, we closely follow the presentation
in Stichtenoth’s book [177]) — a different presentation which is somewhat
less heavy on algebraic terminology appears in the paper by the author and
Sudan [88] where the decoding algorithm discussed here first appeared.

An extension field K of a field k, denoted K/k, is an algebraic function
field (or simply, function field) over k if the following conditions are satisfied:
(i) There is an element x ∈ K that is transcendental over k such that K is
a finite extension of k(x), and (ii) k is algebraically closed in K, that is, the
only elements in K that are algebraic over k are those in k.

For our applications to AG-codes, we will be interested in the case when
k is a finite field, i.e., k = Fq for some prime power q. A function field K/Fq

can be obtained as K = Fq(X)[y1, y2, . . . , ym] where each yi satisfies some
polynomial equation over Fq(X)[y1, . . . , yi−1]. For the rest of this section, K
will denote the function field in question.

Places and Valuations: A function field K/Fq has a set of places PK and the
associated set of valuations, given by a valuation map v : PK×K → Z∪{∞}.
The exact definition of these notions can be found, for instance, in [177]; we
only abstract some properties relevant to us below.

Intuitively the places correspond to “points” on the algebraic curve asso-
ciated with the function field K, and the valuation map tells us how many

6.3 Algebraic-Geometric Codes 123

poles or zeroes a function in K has at a specific place in PK . It has the
property that for any f ∈ K, there are only finitely many places P ∈ PK

such that v(P, f)
= 0. As is normal practice, for each P ∈ PK , we denote
by vP : K → Z ∪ {∞}, the map vP (·) = v(P, ·) which tells how many zeroes
or poles a given function has at P (with the convention vP (0) = ∞ for any
place P). If vP (x) < 0, we say x has a pole at P , and −vP (x) is called the
pole order of x at P . Similarly, if vP (x) > 0, we say that x has a zero at P ,
and in such a case vP (x) is the zero order of x at P . The valuation vP at any
place satisfies the following properties:

(a) vP (a) = ∞ iff a = 0 and vP (a) = 0 for all a ∈ Fq \ {0}.
(b) vP (ab) = vP (a) + vP (b) for all a, b ∈ K \ {0}.
(c) vP (a + b) ≥ min{vP (a), vP (b)} for all a, b ∈ K.

For those familiar with some commutative algebra terminology, we just
recap how places are formally defined from their corresponding valuations.
For every valuation vP of K, the ring of regular functions at P , denoted OP ,
is defined to be

OP = {x ∈ K : vP (x) ≥ 0} .

This ring is a “discrete valuation ring” and in particular is a local ring with
a unique maximal ideal. This unique maximal ideal of OP is defined to be
the “place” P associated with vP , and is given by

P = {x ∈ K : vP (x) > 0} .

Intuitively, OP is the ring of functions in K that do not have any poles at
a certain “point” on the curve; the place P corresponds to this point, and
is algebraically defined as the ideal of functions in K that vanish at that
“point”.

Degree of a place: Associated with every place is a degree abstracted via
the map deg : PK → Z+. The degree, deg(P), of any place P is a positive
integer and intuitively means the following: when we pick a function f ∈ K
which has no poles at P and “evaluate” it at P , we get a value in the field
Fqdeg(P) . Places of degree one correspond to rational points on the curve.
More formally, the notion of degree means the following: for every place P ,
the quotient ring OP /P is a finite field of size qdeg(P).

Evaluations of functions at places: We can abstract the notion of evalu-
ation of elements of the function field at the places by a map eval : K×PK →
F̄q ∪ {∞} (here F̄q =

⋃
i≥1 Fqi is the algebraic closure of Fq). This map has

the following properties:

(i) For every P ∈ PK and f ∈ K, eval(f, P) = ∞ iff vP (f) < 0, and
eval(f, P) = 0 iff vP (f) > 0.

(ii) If f ∈ K, P ∈ PK and vP (f) ≥ 0, then eval(f, P) ∈ Fqdeg(P) .

124 6 Reed-Solomon and Algebraic-Geometric Codes

(iii) The map eval respects field operations; in other words, if vP (f1) ≥ 0
and vP (f2) ≥ 0, then eval(f1 + f2, P) = eval(f1, P) + eval(f2, P), and
eval(f1 ∗ f2, P) = eval(f1, P) ∗ eval(f2, P) (where we have used (+, ∗) to
denote the addition and multiplication operations in both K and F̄q).

Divisors: The divisor group DK of the function field K is a free abelian
group on PK . An element D of DK is thus represented by the formal sum∑

P∈PK
aP P where each aP ∈ Z, and aP = 0 for all but finitely many P .

We say D � 0 if aP ≥ 0 for all P ∈ PK . The support of a divisor D,
denoted supp(D), is the (finite) set {P ∈ PK : aP
= 0}. The degree map
extends naturally to the divisor group DK and deg : DK → Z is defined as
deg(

∑
P aP P) =

∑
P aP deg(P).

For every f ∈ K \ {0}, there is an associated divisor, called the principal
divisor and denoted (f), which is defined by (f) =

∑
P vP (f)P . The following

result states that degree of any principal divisor equals 0. It is a well-known
result and just states that every non-zero function in the function field has
an equal number of zeroes and poles.

Proposition 6.27. For any function field K/Fq and any f ∈ K \ {0},
deg((f)) = 0.

The Riemann-Roch Theorem: For every divisor D ∈ DK , one can define
the linear space of functions L(D) as

L(D) = {g ∈ K : (g) + D � 0}.
For example for a divisor D = aQ−bP where P, Q ∈ PK and a, b > 0, L(D) is
the space of all functions that have at least b zeroes at P and at most a poles
at Q. It is known that for any divisor D � 0, L(D) is a finite-dimensional
vector space over Fq and dim(L(D)) ≤ 1 + deg(D) (see [177] for a proof). A
lower bound on dim(L(D)) is given by the celebrated Riemann-Roch theorem
for function fields, which is stated below. The theorem statement also intro-
duces the “genus” of a function field K/Fq, which in some sense measures
the “complexity” of the underlying algebraic curve. (A genus equal to zero
corresponds to the simplest case when K = Fq(X) is the field of all rational
functions in one variable.)

Theorem 6.28. [Riemann-Roch]: Let K/Fq be any function field. There
is a non-negative integer g, called the genus of K/Fq, such that

(a) For any divisor D ∈ DK , dim(L(D)) ≥ deg(D)− g + 1.
(b) There is an integer c, depending only on K/Fq, such that dim(L(D)) =

deg(D) − g + 1 whenever deg(D) ≥ c. Furthermore, c ≤ 2g − 1.

Algebraic-geometric codes: We are now ready to define the notion of an
AG-code (also known as geometric Goppa code). Let K/Fq be an algebraic

6.3 Algebraic-Geometric Codes 125

function field of genus g, let P0, P1, P2, . . . , Pn be distinct places of degree
one in PK , and let G = P1 + P2 + · · ·+ Pn and D = αP0 be divisors of K/Fq

(note that supp(G) ∩ supp(D) = ∅).
The algebraic-geometric code CL(G, D) = CL(G, α, P0) is defined by

CL(G, α, P0) := {(eval(f, P1), . . . , eval(f, Pn)) : f ∈ L(αP0)} ⊆ Fn
q .

(Note that eval(f, Pi) ∈ Fq since vPi(f) ≥ 0 and deg(Pi) = 1.) It is clear
that the defined space is a linear space, since L(αP0) is an Fq-linear vector
space. The following Proposition follows from the Riemann-Roch theorem
and quantifies the parameters of these codes. 9

Proposition 6.29. Let K/Fq be a function field of genus g, and let α, n be
positive integers with α < n. Let P0, P1, P2, . . . , Pn be distinct places of degree
one in PK , and let G be the divisor G = P1+P2+ . . .+Pn. Then CL(G, α, P0)
is an [n, k, d]q code with k = dim(L(αP0)) ≥ α− g + 1 and d ≥ d∗ def= n− α.
The quantity d∗ = n−α is called the designed distance of the code. Moreover,
if α ≥ 2g − 1, then k = α− g + 1.

Proof: The claims about the dimension follow from the Riemann-Roch theo-
rem. For the distance property, let f1
= f2 ∈ L(αP0) be two distinct messages
of CL(G, α, P0). Then f1−f2 ∈ L(αP0) as well, and hence f1−f2 has at most
α deg(P0) = α poles in all. By Proposition 6.27, f1−f2 has at most α zeroes,
and hence eval(f1−f2, Pi) = 0 for at most α values of i, 1 ≤ i ≤ n. Therefore,
the encodings of f1 and f2 agree on at most α places among P1, P2, . . . , Pn,
which proves that the distance of the code is at least n− α. �
Significance of AG-codes: Codes constructed as above and achieving
d/n, k/n > 0 (in the limit of large n) are known for constant alphabet size q.
In fact, such codes achieving bounds better than those known by probabilistic
constructions are known for q ≥ 49 [190]. Such a situation, where an explicit
construction is better than the best probabilistic construction, is quite rare in
combinatorics. This is one of the primary reasons for the importance of and
enormous interest in algebraic-geometric codes. Moreover, AG-codes have a
very rich algebraic structure which can be exploited to design efficient de-
coding algorithms, as we do in this section. Recently, Elkies [52] defined a
more general algebraic family of codes than the AG-codes discussed here.
His codes are non-linear and are based on some deep algebraic properties of

9The AG-codes defined here are the so called “one-point divisor codes” since the
space of functions are allowed to have poles at only one place. While one can also
study AG-codes defined using more general divisors (i.e., allow poles at multiple
places), one-point divisor codes are the most widely studied AG-codes, and there
is no clear quantitative advantage of using more general divisors in defining the
code. Therefore, we will focus only on one-point divisor codes here. An explicit
generalization of the decoding algorithm presented here to the case of AG-codes
based on general divisors appears, for instance, in [151].

126 6 Reed-Solomon and Algebraic-Geometric Codes

certain modular curves. For certain setting of parameters his codes provide
an asymptotic improvement over what is possible using “conventional” AG-
codes. Thus the underlying idea of defining codes by evaluations of “nice”
functions on a suitably picked set of points on a “nice” algebraic curve or
variety is a very powerful one. Our decoding algorithm gives a powerful and
quite general method of dealing with such algebraic codes.

6.3.3 List Decoding Algorithm for Algebraic-Geometric Codes

We now describe the extension of our Reed-Solomon list decoding algorithm
to the case of algebraic-geometric codes. We begin with a formal description
of the problem – this is the generalization of the polynomial reconstruction
problem discussed in the decoding of Reed-Solomon codes to the case of
algebraic function fields.

Problem 6.30. (Function Reconstruction)
Input: Integers n, α, t; n distinct pairs {(Pi, yi)}n

i=1 where each Pi is a place
of degree one of the function field K/Fq, and each yi ∈ Fq; and a place P0 of
degree one with P0 /∈ {P1, . . . , Pn}.
Output: All functions h in L(αP0) that satisfy eval(h, Pi) = yi for at least
t values of i, 1 ≤ i ≤ n.

As before, it is easily seen the list decoding problem for the AG-code
CL(G, α, P0) from (n− t) errors (with divisor G = P1 +P2 + . . .+Pn) reduces
to the above reconstruction problem. While in the AG-codes case the places
Pi are distinct, note that this is not required in the above specification, and
indeed as with the case of polynomial reconstruction, we will solve the above
problem without assuming that the Pi’s are distinct.

Solution Idea As with the Reed-Solomon case, we will first try to describe
the data points {(Pi, yi)} by some polynomial Q. We follow [165] and let Q be
a polynomial in a formal variable y with coefficients from K (i.e., Q ∈ K[y]).
Now given a value of yi ∈ Fq, Q(yi) will yield an element of K. By definition
such an element of K can be evaluated at the place Pi ∈ PK . We will require
that Q have the property that Q(Pi, yi)

def= eval(Q(yi), Pi) equal zero, for
every i ∈ [n]. We will actually require more and insist that (Pi, yi) “behave”
like a zero of multiplicity r of Q; since Pi ∈ PK and yi ∈ Fq, we need to
be careful in specifying the conditions to achieve this, and we will return to
this shortly. We will also insist that Q(y) has a small number of poles (say,
at most l) at P0 for any substitution of y with a function in L(αP0). Having
found such a Q, we then look for roots h ∈ L(αP0) of Q, and winnow out
those that do not satisfy eval(h, Pi) = yi for at least t values of i, 1 ≤ i ≤ n.

6.3 Algebraic-Geometric Codes 127

Description of the Algorithm Algorithm Function-Reconstruct (n, α, t;
P0, P1, . . . , Pn ∈ PK)
Input: y1, y2, . . . , yn ∈ Fq

Output: All functions h ∈ L(αP0) such that eval(h, Pi) = yi for at least t
values of i ∈ {1, . . . , n}.
1. Pick parameters r and l suitably (as in the algorithm Poly-Reconstruct)
2. “Fit” the pairs (yi, Pi) by a “suitable” non-zero polynomial Q ∈ K[y].

Specifically find Q ∈ K[y], Q
= 0, such that
(i)Q(f) ∈ L(lP0) for every f ∈ L(αP0), and
(ii)for every i ∈ {1, 2, . . . , n} and h ∈ K, if eval(h, Pi) = yi then

vPi(Q(h)) ≥ r.
3. Find all roots h ∈ L(αP0) of Q ∈ K[y]. For each of them check if

eval(h, Pi) = yi for at least t values of i, and if so, output h.

What remains to be done is to explicitly express the Conditions (i) and
(ii) above in a manner that allows for an algorithmic solution. To ensure
requirement (i), it suffices if the coefficient of the yj term in Q ∈ K[y] belongs
to L((l− αj)P0). To require so, we assume that we are explicitly given basis
functions φ1, . . . , φl−g+1 for L(lP0) which satisfy vP0(φj , x0) ≥ −(j + g − 1)
(i.e., φj has at most (j + g − 1) poles at p0) and vP0(φj) > vP0 (φj+1) for
1 ≤ j < l − g + 1 (i.e., the pole orders at P0 of φj increase with j). Let

s
def=

⌊
l−g
α

⌋
. We will then look for coefficients qj1,j2 ∈ Fq such that the

polynomial Q ∈ K[y] can be written of the form:

Q(y) =
s∑

j2=0

l−g+1−αj2∑
j1=1

qj1j2φj1y
j2 . (6.13)

By explicitly setting up Q as above, we impose the Condition (i) in the
algorithm above. To enforce Condition (ii), we need to “shift” our basis. This
is done exactly as in the Reed-Solomon case with respect to the yi’s; however,
Pi ∈ PK and hence a different method is required to handle it. The lemmas
below show how this may be achieved.

Lemma 6.31. For every non-zero f, g ∈ K and P ∈ PK such that vP (f) =
vP (g), there exist α0, β0 ∈ Fq \ {0}, such that vP (α0f + β0g) > vP (f).

Proof: Let vP (f) = vP (g) = m and f−1 be the multiplicative inverse of f in
K. Then vP (f ∗ f−1) = 0 and vP (f−1) = −vP (f) = −m. Therefore, vP (g ∗
f−1) = vP (g)+vP (f−1) = 0. Let eval(f∗f−1, P) = α and eval(g∗f−1, P) = β.
We have α, β
∈ {0,∞}, and since P is of degree one, we have α, β ∈ Fq. Thus
we find that eval(βf ∗f−1−αg∗f−1, P) = 0. Thus vP (βf ∗f−1−αg∗f−1) > 0
and so vP (βf − αg) > m, as required. �

128 6 Reed-Solomon and Algebraic-Geometric Codes

Lemma 6.32. Given non-zero functions φ1, . . . , φp of distinct pole orders at
P0 satisfying φj ∈ L((j +g−1)P0), and a place Pi
= P0, there exist non-zero
functions ψ1, . . . , ψp ∈ K that satisfy:

(i) vPi(ψj) ≥ j − 1 (i.e., ψj has at least (j − 1) zeroes at Pi)
(ii) There exist αPi,j1,j3 ∈ Fq for 1 ≤ j1, j3 ≤ p such that each function

φj1 can be expressed as a linear combination of the ψj’s of the form:
φj1 =

∑p
j3=1 αPi,j1,j3ψj3 .

Proof: We prove a stronger statement by induction on p: If φ1, . . . , φp are
linearly independent functions (over Fq) that satisfy vPi(φj) ≥ m for each
j = 1, 2, . . . , p for some m ≥ 0, then there exist functions ψ1, . . . , ψp with
vPi(ψj) ≥ (m + j − 1) that generate the φj ’s over Fq. Note that this will
imply our lemma since the fact that φj ’s have distinct pole orders at P0

implies that φ1, φ2, . . . , φp are linearly independent (this follows easily using
the fact that vP0(αf + βg) = min{vP0(f), vP0(g)} if vP0(f)
= vP0(g)).

The statement claimed is obviously true for p = 1, with the choice ψ1 =
φ1. Now let p > 1. Assume without loss of generality that φ1 is a function
with the least zero order at Pi. By assumption, φ1 has at least m zeroes at
Pi, i.e., vPi(φ1) ≥ m. We let ψ1 = φ1. Now, for 2 ≤ j ≤ p, set φ′

j = φj if
vPi(φj) > vPi(φ1). Otherwise, if vPi(φj) = vPi(φ1), using Lemma 6.31 to the
pair (φ1, φj) of functions, we get αj , βj ∈ Fq−{0} such that the function φ′

j =
αjφ1 + βjφj satisfies vPi(φ′

j) > vPi(φ1) ≥ m. Since φj = β−1
j φ′

j − αjβ
−1
j φ1

in this case, we conclude that in any case, for 2 ≤ j ≤ p, ψ1 = φ1 and φ′
j

generate φj . Now φ′
2, φ

′
3, . . . , φ

′
p are linearly independent (since φ1, φ2, . . . , φp

are) and vPi(φ′
j) ≥ m + 1 for 2 ≤ j ≤ p. Therefore the induction hypothesis

applied to the functions φ′
2, . . . , φ

′
p now yields ψ2, . . . , ψp as required. �

We are now ready to express Condition (ii) of Algorithm Function-
Reconstruct which requires that

vPi(Q(h)) ≥ r for all h ∈ K and i ∈ {1, 2, . . . , n} such that eval(h, Pi) = yi .
(6.14)

Informally, we say that the above requirement forces (Pi, yi) to be a “zero” of
multiplicity r of the polynomial Q. Using Lemma 6.32 and Equation (6.13),
we know that Q has the form

Q(y) =
s∑

j2=0

l−g+1∑
j3=1

l−g+1−j2α∑
j1=1

qj1,j2αPi,j1,j3 ψj3,Pi yj2 .

The shifting to yi is achieved by defining

Q(i)(y) def= Q(y + yi) . (6.15)

6.3 Algebraic-Geometric Codes 129

The requirement (6.14) on Q, Pi now becomes

vPi(Q
(i)(h)) ≥ r for all h ∈ K such that eval(h, Pi) = 0, i.e., ∀ h s.t.

vPi(h) ≥ 1 . (6.16)

Now

Q(i)(y) =
s∑

j4=0

l−g+1∑
j3=1

q
(i)
j3,j4

ψj3,Piy
j4 , (6.17)

where

q
(i)
j3,j4

def=
s∑

j2=j4

l−g+1−αj2∑
j1=1

(
j2
j4

)
yj2−j4

i · qj1,j2αPi,j1,j3 . (6.18)

The terms in Q(i)(y) that are divisible by yp contribute p towards the mul-
tiplicity of (Pi, 0) as a “zero” of Q(i), or, equivalently, the multiplicity of
(Pi, yi) as a zero of Q. Since vPi(ψj3,Pi) ≥ (j3 − 1) by Lemma 6.32, we can
achieve the required Condition (6.16) on Q(i), or equivalently the required
Condition (6.14) on Q, by insisting that q

(i)
j3,j4

= 0 for all j3 ≥ 1, j4 ≥ 0 such
that j4 + j3− 1 < r, i.e. j3 + j4 ≤ r (there are

(
r+1
2

)
such constraints for each

i ∈ {1, 2, . . . , n}).
The above discussion shows that it is possible to solve Step 1 in Algo-

rithm Function-Reconstruct by finding a non-zero solution to a homogeneous
linear system (with unknowns being the coefficients qj1,j2 from the expan-
sion (6.13) of the polynomial Q), modulo the assumption that we “know” a
certain basis φ1, φ2, . . . , φl−g+1 of L(lP0), and also the “basis change coeffi-
cients” αPi,j1,j3 (from Lemma 6.32). The coefficients of the polynomial will
also be found and expressed in terms of their representation in terms of the
basis 〈φ1, . . . , φl−g+1〉. To solve Step 2, we need a subroutine to find roots of
univariate polynomials over function fields, to which we turn next.

6.3.4 Root Finding over Algebraic Function Fields

Before discussing the root finding algorithm, we discuss some issues concern-
ing the representation of elements of a function field that deserve attention
at this point. The decoding algorithm discussed above relies strongly on the
algebraic properties of the underlying function field. In particular, it relies
on the ability to perform certain operations over these fields. These opera-
tions include basic field operations such as addition and multiplication, but
also some non-trivial operations such as evaluating functions at “places”, and
finding roots of polynomials over these fields.

One of the essential bottlenecks towards the unified presentation of our
algorithm for all AG-codes is that one needs a generic method to represent
the elements of an algebraic function field so that (a) these representations

130 6 Reed-Solomon and Algebraic-Geometric Codes

are short for the elements of interest in the construction of the algebraic-
geometric codes; and (b) basic operations are efficient under this representa-
tion. By carefully picking the representation of the algebraic-geometric code,
we are able to meet both the requirements above. By doing so, we are able
to present a compact and general theorem about list decoding of AG-codes.

As mentioned earlier, algorithms that involve function fields, and in par-
ticular decoding algorithms for AG-codes, raise several issues on how to rep-
resent elements from the function field K and the places PK .

In order to implement Algorithm Function-Reconstruct efficiently over a
function field K, we would like to perform the following basic operations
efficiently: (i) Given two elements x, y ∈ K, compute their sum and product
in K; (ii) Given f ∈ K and P ∈ PK , compute vP (f) and eval(f, P); and (iii)
Given a divisor D � 0, compute a basis for the vector space L(D) over Fq (it
suffices to solve this for one-point divisors D = αP0).

It is a priori unclear that these operations can performed in polynomial
time for every function field K. First of all, the function field K is an infinite
set, so one cannot assume that operations in K (like sum and product) are
unit operations. Instead one must fix a representation for the elements and
give explicit algorithms to perform these operations that are efficient with re-
spect to the size of the representation of an element. A natural representation
to consider is to express elements of K as ratio of two homogeneous multi-
variate polynomials. For this representation, the field operations in K can be
done in time polynomial in the sum of degrees of the respective polynomials.
However, for question (iii) above, it is not known whether for general function
fields there always exists a basis for L(D) over Fq with a succinct representa-
tion (i.e., one of size polynomial in deg(D)) as the ratio of polynomials (see
[165] for a discussion concerning this point).

For applications to decoding, one does not need to work with all of K,
but instead can focus attention only on elements in L(D) for some divisor
D � 0 (in fact for D = lP0 for some place P0). This allows us the option
of representing elements of L(D) as vectors in F

dim(L(D))
q which represent

their coordinates with respect to some fixed basis of L(D) over Fq. Since it
is known that dim(L(D)) ≤ deg(D) + 1, this representation will be small
provided deg(D) is small. Indeed, this is what we exploited already in our
“solution” to Step 1 of Algorithm Function-Reconstruct. In order to be able to
perform the root-finding step also efficiently, we augment this representation
suitably. Before explaining this, we formally describe the basic root-finding
task that we wish to solve, and describe an algebraic algorithm to solve it
(this is along the lines of the algorithms of [146, 63]). We then discuss the
representation issues this algorithm motivates, and in the next section give a
full list decoding algorithm with the required representation explicitly spelled
out.

6.3 Algebraic-Geometric Codes 131

Procedure ROOT-FIND(K,D)(Q)

Input: A degree m polynomial Q =
∑m

i=0 aiy
i ∈ K[y] where each ai ∈ L(D)

for some divisor D � 0.

Output: All roots of Q that lie in L(D).

1. Let R ∈ PK be a place (outside supp(D)) that has degree r > deg(D).
“Reduce” H modulo the place R — namely, compute bi = eval(ai, R) for
0 ≤ i ≤ m and consider the polynomial P =

∑m
i=0 biY

i ∈ Fqr [Y].
2. Compute the roots, say α1, . . . , αt, of P that lie in Fqr using a root-finding

algorithm for finite fields. (This can be accomplished in deterministic
poly(q, r) time by an algorithm due to Berlekamp [24].)

3. For each αj , 1 ≤ j ≤ t, “find” βj ∈ L(D) such that eval(βj , R) = αj , if
any such βj exists.

The tricky issue in the above algorithm is that we need to find a place R
of large enough degree and then be able to evaluate functions f ∈ L(D) at R.
To aid this we “represent” a place R by the values eval(φi, R), for 1 ≤ i ≤ p
where p = dim(L(D)) and φ1, . . . , φp is a basis of L(D) over Fq. Together
with the representation of any element of L(D) as a linear combination of the
φi’s this clearly enables us to evaluate any element of L(D) at R. Since each
eval(φi, R) ∈ Fqr where r = deg(R), for purposes of evaluation by members
of L(D), one can represent R as a vector of length p with entries in Fqr and
present it as auxiliary “advice” input to the root-finding algorithm. Given
this table of evaluations of the basis functions at R, Step 3 just amounts
to solving a linear system of equations over Fq, and therefore can also be
performed efficiently. (We will shortly argue that for each αj , there can exist
at most one βj ∈ L(D) such that eval(βj , R) = αj . Therefore, the operation
of Step 3, which “lifts” roots in Fqr to roots in L(D), is well-defined.)

It should be clear that given this representation, the above algorithm
can in fact be implemented efficiently. We next argue the correctness of the
above root-finding procedure. Then we will integrate it with the solution
to the interpolation step (Step 1) of Function-Reconstruct to describe the
full list decoding algorithm for AG-codes, with all the representation details
explicitly spelled out.

The two simple lemmas below are necessary for the correctness of the
algorithm.

Lemma 6.33. For any function field K, there exists a place of degree m in
PK for every large enough integer m.

Proof: By the Hasse-Weil bound (see, for example, [177, Theorem V.2.3]),
the number Nm of places of degree m in PK satisfies |Nm− qm−1| ≤ 2gqm/2

where g is the genus of the function field K. Hence if m ≥ m0 where m0 is
the smallest integer that satisfies qm0−1

2qm0/2 > g, then Nm ≥ 1. �

132 6 Reed-Solomon and Algebraic-Geometric Codes

Lemma 6.34. If f1, f2 ∈ L(A) for some divisor A � 0 and eval(f1, R) =
eval(f2, R) for some place R with deg(R) > deg(A), then f1 = f2.

Proof: Suppose not, so that f1−f2
= 0. Then, by Proposition 6.27, deg((f1−
f2)) = 0. But f1 − f2 ∈ L(A) and vR(f1 − f2) ≥ 1, so that deg((f1 − f2)) ≥
deg(R)− deg(A) > 0, a contradiction. Hence f1 = f2. �

The correctness of ROOT-FIND follows easily from the above two lem-
mas. The first lemma implies that a place R as required in the first step of
ROOT-FIND exists. The second lemma implies that reducing the polynomial
modulo R (of degree greater than deg(D)) “preserves” all its roots that lie in
L(D), since “lifting” the root from Fqr to L(D) is an “injective” operation.

It is clear that given the place R as advice in the form of the table of
values of eval(φ, R) for φ ranging over a set B of basis functions for L(D),
the root-finding algorithm can be implemented in polynomial time. (We also
assume the coefficients of the polynomial Q, which are elements of L(D), are
input in the form of the coefficients of their expansion in terms of the same
basis B.) We can thus record the following which states that the root-finding
step of Algorithm Function-Reconstruct can be implemented efficiently.

Theorem 6.35. There is an efficient root-finding algorithm that, for any
function field K and any divisor D � 0, given an “advice” that depends only
on D and is of size polynomial in deg(D), finds, in poly(m, deg(D)) time,
all roots in L(D) of any input degree m polynomial in K[y] all of whose
coefficients lie in L(D).

6.3.5 An Explicit List Decoding Algorithm

With the individual efficient implementations of both the interpolation and
root-finding steps of Function-Reconstruct in place, we now move on to the
full description of an explicit polynomial time list decoding algorithm for
AG-codes, together with all parameter choices. The algorithm works with a
polynomial size advice (or “non-uniform” input) that depends only the code
(and not on the received word which is being decoded). This will imply that
AG-codes admit a succinct representation given which Function-Reconstruct
can be implemented to run in polynomial time. In the next section, we will
formally establish the correctness of the algorithm and analyze its error-
correction performance for our specific parameter choices.

We only discuss the version of Function-Reconstruct for decoding with
polynomial-sized lists (i.e., the result of Theorem 6.12 generalized to AG-
codes). The analogous generalization of Theorem 6.10 for decoding with
constant-sized lists to AG-codes follows similarly — we omit the details. Re-
call that the object of Function-Reconstruct is to find, for input pairs (Pi, yi),
1 ≤ i ≤ n, where each Pi ∈ PK is a place of K/Fq and each yi ∈ Fq, a list of
all h ∈ L(αP0) such that eval(h, Pi) = yi for at least t values of i.

6.3 Algebraic-Geometric Codes 133

Algorithm Function-Reconstruct(n, α, t; P0, P1, . . . , Pn ∈ PK)
Input: y1, y2, . . . , yn ∈ Fq

Output: All functions h ∈ L(αP0) which satisfy eval(h, Pi) = yi for at
least t values of i ∈ {1, . . . , n}.
Parameters: n, α, t; the genus g of K. Based on these the algorithm computes
parameters r, l.

Non-uniform input: Fix a set of linearly independent functions {φj1 : 1 ≤
j1 ≤ l − g + 1} ⊆ L(lP0) such that vP0(φj1) ≥ −(j1 + g − 1) (i.e., φj1 has
at most (j1 + g − 1) poles at P0). Note that these functions span a subspace
W of L(lP0) of dimension (l− g + 1), and by the Riemann-Roch theorem, if
l ≥ 2g − 1, they span the entire space L(lP0). As shown in Lemma 6.32, for
each i, 1 ≤ i ≤ n, there exists a basis {ψj3,Pi : 1 ≤ j3 ≤ l − g + 1} of the
subspace W of L(lP0) such that vPi(ψj3,Pi) ≥ j3−1. The explicit information
which the decoding algorithm needs as advice information (or non-uniform
input) is the following:

(a) The values eval(φj1 , Pi) ∈ Fq for 1 ≤ i ≤ n and 1 ≤ j1 ≤ l − g + 1.
(b) The “basis change” coefficients {αPi,j1,j3 ∈ Fq : 1 ≤ i ≤ n, 1 ≤

j1, j3 ≤ l − g + 1} such that for every i and every j1, we have
φj1 =

∑
j3

αPi,j1,j3ψj3,Pi (as elements in K).
(c) A place R ∈ PK with deg(R) = s > l represented through the table of

values eval(φj1 , R) for 1 ≤ j1 ≤ l− g +1 (note that each such evaluation
lies in Fqs).

(We stress here that the above information depends on the specific set of
places P0, P1, . . . , Pn, but not on the yi’s, and is moreover of size polynomial
in n — indeed it is of size O(nl2 log q), and l is at most cubic in n for the
choice made in the algorithm. In our application to decoding AG-codes, this
means that the polynomial amount of advice information necessary for our
algorithm depends only on the code and not on the actual received word that
is being decoded. In other words, we can simply view the above information
as comprising a non-standard, but succinct, representation of the underlying
AG-code.)

Step 0: Compute parameters r, l which satisfy

rt > l and
(l − g)(l − g + 1)

2α
> n

(
r + 1

2

)
. (6.19)

In particular, set

r
def= 1+

⌊
2gt+αn+

√
(2gt+αn)2−4(g2−1)(t2−αn)

2(t2−αn)

⌋
, (6.20)

l
def= rt− 1 . (6.21)

134 6 Reed-Solomon and Algebraic-Geometric Codes

Step 1: (Interpolation Step) Find Q ∈ L(lP0)[y] of the form

Q(y) =
s∑

j2=0

l−g+1−αj2∑
j1=1

qj1j2φj1y
j2 ,

for s
def=

⌊
l−g
α

⌋
; i.e., find values of the coefficients {qj1,j2 ∈ Fq} such that

the following conditions hold:
1. At least one qj1,j2 is non-zero (so that Q is a non-zero polynomial in

K[y]).
2. For every i ∈ [n], ∀j3, j4, j3 ≥ 1, j4 ≥ 0 such that j3 + j4 ≤ r,

q
(i)
j3,j4

def=
s∑

j2=j4

l−g+1−αj2∑
j1=1

(
j2
j4

)
yj2−j4

i · qj1,j2αPi,j1,j3 = 0.

Step 2: (Root-finding step) Using the root-finding algorithm ROOT-FIND
from Section 6.3.4 together with the place R which is supplied to the
algorithm, “find” all roots h ∈ L(αP0) ⊆ L(lP0) of the polynomial Q ∈
K[y]. For each such h, check if eval(h, Pi) = yi for at least t values of
i, and if so, include h in output list. (Since h is “found” by finding its
coefficients with respect to the basis functions φj1 and the algorithm is
given the values eval(φj1 , Pi) for 1 ≤ i ≤ n and 1 ≤ j1 ≤ l − g + 1, each
eval(h, Pi) can be computed efficiently.)

Step 3: Output the list of all functions h ∈ L(αP0) found in Step 2.

Since Step 1 just involves solving a homogeneous linear system of equa-
tions and Step 2 involves root-finding for which we gave an efficient algorithm
in Section 6.3.4, it is clear that the above algorithm runs in polynomial time
given the advice information it takes as input. Since the list decoding prob-
lem for AG-codes reduces to the Function Reconstruction problem, we thus
have a polynomial time list decoding algorithm for AG-codes (assuming the
required representation of the code). We next analyze the error-correction
performance of the algorithm for the specific choice of parameters made in
the algorithm.

6.3.6 Analysis of the Algorithm

We now analyze the performance of Function-Reconstruct. We first verify
that the choice of r, l made in the algorithm satisfy the required Condition
(6.19).

Lemma 6.36. If n, α, t satisfy t2 > αn, then for the choice of r, l made in
the algorithm (in Equations (6.20) and (6.21)), the conditions (l−g)(l−g+2)

2α >

n
(
r+1
2

)
and rt > l both hold.

6.3 Algebraic-Geometric Codes 135

Proof: The proof parallels that of Lemma 6.11. The condition rt > l certainly
holds since we pick l

def= rt−1. Using l = rt−1, the other constraint becomes

(rt− g)2 − 1
2α

> n

(
r + 1

2

)

which simplifies to

r2(t2 − αn)− (2gt + αn)r + (g2 − 1) > 0.

If t2 − αn > 0, it suffices to pick r to be an integer greater than the larger
root of the above quadratic, and therefore picking

r
def= 1+

⌊
2gt+αn+

√
(2gt+αn)2−4(g2−1)(t2−αn)

2(t2−αn)

⌋

suffices, and this is exactly the choice made in the algorithm. �

Lemma 6.37. If n
(
r+1
2

)
< (l−g)(l−g+2)

2α , then Q(y) as sought in Step 1 does
exist (and can be found in polynomial time by solving a linear system).

Proof: The proof follows that of Lemma 6.8. The computational task in Step
1 is once again that of solving a homogeneous linear system. A non-trivial
solution exists as long as the number of unknowns exceeds the number of
constraints. The number of constraints in the linear system is n

(
r+1
2

)
, while

the number of unknowns equals

s∑
j2=0

(l − g + 1− αj2) ≥ (l − g)(l − g + 2)
2α

. �

We next prove that any Q found in the interpolation step will have all the
required functions h, namely those that satisfy eval(h, Pi) = yi for at least t
values of i, as roots.

Lemma 6.38. For i ∈ {1, 2, . . . , n}, if h ∈ K satisfies eval(h, Pi) = yi, then
vPi(Q(h)) ≥ r.

Proof: Using Equation (6.17), we have the following for every place P :

eval(Q(h), P) =
s∑

j4=0

l−g+1∑
j3=1

q
(i)
j3,j4

eval(ψj3,Pi , P)(eval(h, P)− yi)j4 .

Now if eval(h, Pi) = yi, we get

eval(Q(h), P) =
s∑

j4=0

l−g+1∑
j3=1

q
(i)
j3,j4

eval(ψj3,Pi , P)(eval(h, P)− eval(h, Pi))j4 .

(6.22)

136 6 Reed-Solomon and Algebraic-Geometric Codes

By our choice of Q, q
(i)
j3,j4

= 0 for j3 + j4 ≤ r. Also, vPi(ψj3,Pi) ≥ j3 − 1, and

if h(i) is defined by its value on places in PK as eval(h(i), P) def= eval(h, P)−
eval(h, Pi), then vPi((h(i))j4) ≥ j4. It then follows from Equation (6.22) that
vPi(Q(h)) ≥ r. �

Lemma 6.39. If h ∈ L(αP0) is such that eval(h, Pi) = yi for at least t values
of i ∈ {1, 2, . . . , n} and rt > l, then Q(h) ≡ 0; i.e. h is a root of Q ∈ K[y].

Proof: By our choice of Q in the interpolation step, we have Q(h) ∈ L(lP0)
for all h ∈ L(αP0). Hence vPi(Q(h)) ≥ 0 for each i ∈ [n]. If eval(h, Pi) = yi

for at least t values of i, using Lemma 6.38, we get
∑

i∈[n] vPi(Q(h)) ≥ rt > l,
and hence the zero order of Q(h) is greater than l. Since Q(h) ∈ L(lP0), the
pole order of Q(h) is at most l. Since there are more zeroes than poles for
Q(h), appealing to Proposition 6.27, we therefore conclude that we must have
Q(h) ≡ 0. Thus h is a root of Q. �

Our main theorem on list decoding AG-codes now follows from Lemmas 6.36-
6.39 and the polynomial runtime claimed in the previous section.

Theorem 6.40. Let C = CL(G, α, P0) be an AG-code of blocklength n and
designed minimum distance d∗ = n−α. Then there exists a representation of
the code of size polynomial in n, given which there exists a polynomial time
list decoding algorithm for C that decodes up to e < n−√αn = n−√n(n− d∗)
errors.

6.3.7 Weighted List Decoding of AG-codes

We now state the generalization of the result of Theorem 6.40 to an algo-
rithm that can exploit soft information (weights), similar to the soft decoding
algorithm for Reed-Solomon codes from Section 6.2.10. The proof method is
similar to the Reed-Solomon case and involves using multiplicities in propor-
tion to the weights of the various pairs in the interpolation step. We omit the
details.

Theorem 6.41. For every q-ary AG-code C of blocklength n and designed
minimum distance d∗ = n − α, there exists a representation of the code of
size polynomial in n under which the following holds. Let ε > 0 be an arbitrary
constant. For 1 ≤ i ≤ n and γ ∈ Fq, let wi,γ be a non-negative real. Then
one can find in poly(n, q, 1/ε) time, a list of all codewords c = 〈c1, c2, . . . , cn〉
of C that satisfy

n∑
i=1

wi,ci ≥
√√√√(n− d∗)

n∑
i=1

∑
γ∈Fq

w2
i,γ + ε max

i,γ
wi,γ . (6.23)

6.3 Algebraic-Geometric Codes 137

6.3.8 Decoding Up to the “q-ary Johnson Radius”

For Reed-Solomon codes of blocklength n and minimum distance d, the quan-
tity n−√n(n− d) closely approximates the Johnson radius since the alpha-
bet size is very large (it is at least n). Similarly, for AG-codes over very
large alphabets, the result of Theorem 6.40 decodes almost up to the John-
son bound on list decoding radius of the concerned AG-code. However, as
discussed earlier, AG-codes of growing blocklength can also be defined over
a fixed alphabet, say q. When q � n, the quantity (n −√

n(n− d)), while
always greater than d/2 so that we are still decoding beyond half the designed
minimum distance, is no longer an accurate estimate of the Johnson radius
for q-ary codes (which the reader might recall from Theorem 3.2 of Chapter 3

is n
(
1− 1

q

) · (1−
√

1− d/n
1−1/q

)
).

However, as was insightfully noted by Koetter and Vardy [121], it is pos-
sible to improve the number of errors corrected by our result from Theo-
rem 6.40, using the soft decoding algorithm from Theorem 6.41. This is quite
surprising since the result of Theorem 6.40 is for hard decoding where the
channel just outputs one of the q symbols as the received symbol at each
position, and thus (seemingly) provides no soft information whatsoever. In
fact, using the soft decoding algorithm with the right choice of weights, one
can decode up to (exactly) the q-ary Johnson bound on list decoding radius!
Thus, as with Reed-Solomon codes, algebraic-geometric codes can also be ef-
ficiently decoded up to their “a priori combinatorial list decoding potential”,
namely the q-ary Johnson radius.

The actual setting of weights which allows for decoding up to the q-ary
Johnson radius is the following: Let δ = d∗/n be the relative designed distance
of the AG-code, and let

τ
def=

(
1− 1

q

)(
1−

√
1− qδ

q − 1

)
(6.24)

be the desired fraction of errors to be list decoded (this is just the q-ary John-
son radius normalized by the blocklength). It is a straightforward calculation
to check that such a τ satisfies

τ2

q − 1
+ (1− τ)2 = 1− δ . (6.25)

If the i’th received symbol of the received word y is yi ∈ Fq, then we set
wi,yi = 1 − τ and wi,γ = τ/(q − 1) for γ ∈ Fq \ {yi}, and then apply The-
orem 6.41 to this choice of weights. Assuming there are e errors, Condition
(6.23) of Theorem 6.41 implies that the algorithm successfully finds all code-
words within Hamming distance e from y provided

(n− e) · (1− τ) + e · τ

q − 1
>

√
(n− d∗)n

(τ2

q − 1
+ (1− τ)2

)
. (6.26)

138 6 Reed-Solomon and Algebraic-Geometric Codes

We now prove that for τ defined as in Equation (6.24), the above condition
is satisfied as long as e < τn. (We have ignored the ε slack term needed
in Condition (6.23) for convenience, but this has a negligible effect on the
performance, which is explicitly accounted for in the formal statement below.)
Indeed, setting e = γn (for some γ < τ) and using Equation (6.25), Condition
(6.26) above is satisfied as long as

(1− γ)(1− τ) +
γτ

q − 1
> 1− δ

⇐= 1− τ − γ
(
1− qτ

q − 1

)
> 1− δ . (6.27)

Since τ < (1 − 1/q) and γ < τ , the left hand side of the above inequality is
greater than

1− τ − τ
(
1− qτ

q − 1

)
=

τ2

q − 1
+ (1 − τ)2 = 1− δ ,

as desired, where the last step follows from Equation (6.25).
Hence, one can efficiently list decode q-ary AG-codes of relative designed

distance δ up to a fraction τ of errors, for τ as defined in Equation (6.24), or,
in other words, up to the q-ary Johnson bound on list decoding radius. For
easy reference, we state the formal result below.

Theorem 6.42 ([88, 121]). For every ε > 0 and for every q-ary AG-code C
of blocklength n and designed relative distance δ, there exists a representation
of the code of size polynomial in n, given which there exists a polynomial time
list decoding algorithm for C that decodes up to

n
(
1− 1

q

)(
1−

√
1− qδ

q − 1
− ε

)

errors.

6.3.9 List Decodability Offered by the Best-Known AG-codes

The results of the previous sections imply that for AG-codes, assuming they
are suitably represented, there are efficient list decoding algorithms to decode
up to the Johnson radius (and hence beyond half the designed distance).
We now apply these results to the best known AG-codes (in terms of the
asymptotic rate vs. distance trade-off) in order to infer the existence of very
good list decodable codes. We next present a discussion of the various best
known constructions of algebraic-geometric codes.

Let K/Fq be a function field that has at least n + 1 places P0, P1, . . . , Pn

of degree one. Let C be a q-ary algebraic-geometric code CL(G, α, P0) over
K of blocklength n and designed distance d∗ = n − α. Let g = g(K) be the

6.3 Algebraic-Geometric Codes 139

genus of K. By Proposition 6.29, the dimension k of C is at least α− g + 1,
and distance d is at least the designed distance d∗ = n − α. Hence the rate
R and relative distance δ of C satisfy R + δ ≥ 1− g/n.

In order to obtain the best trade-off between R and δ for an asymptotically
good family of AG-codes, it is therefore desirable to find a sequence of func-
tion fields Ki/Fq, i ≥ 1, such that each Ki has at least ni +1 places of degree
one where ni → ∞ as i → ∞, and Ki has genus gi, with lim supi gi/ni < 1
and as small as possible. Constructions of such a sequence of function fields
is a non-trivial task. In fact the limiting value of ratio gi/ni for a sequence of
function fields Ki/Fq with ni →∞ cannot be smaller than 1/(

√
q−1) — this

is the so called Drinfeld-Vlădut bound [43] (see also [177, Section V.3]). The
amazing fact, which is a major accomplishment in the theory of algebraic
function fields, is that for every q which is an even power of a prime, there
are known constructions of towers of function fields that meet the Drinfeld-
Vlădut bound, i.e., they achieve lim supi gi/ni = 1/(

√
q − 1). The first such

constructions were due to Ihara [102] and Tsfasman, Vlădut and Zink [190].
The authors of [190] combined the construction of such function fields to-
gether with Goppa’s idea of obtaining codes from algebraic curves, to obtain
a major breakthrough result in coding theory. Specifically, they obtained the
trade-off R + δ ≥ 1 − 1√

q−1 between the rate R and relative distance δ for a
family of linear codes over Fq when q was a square. This gives an improve-
ment over the Gilbert-Varshamov bound R ≥ 1−Hq(δ) (which is the trade-off
achieved by random linear codes) for a certain range of δ for q ≥ 49. The con-
struction of [190] was, however, very complicated and their proofs required
deep results from algebraic geometry and the theory of modular curves. The
concerned modular curves were not explicitly specified and it was extremely
hard to obtain algorithms of reasonable time complexity to compute a rep-
resentation of the concerned AG-code (even though Manin and Vlădut [135]
gave an algorithm — of high complexity — showing how to construct the cor-
responding codes; see also [119, 130] for a discussion of algorithms for code
construction on modular curves, and the work of Elkies [51] for a discussion
of explicit equations for certain modular curves).

In a major step forward in 1995, Garcia and Stichtenoth [65, 66] (see
also the survey [64]) presented two explicitly described towers of function
fields that attain the Drinfeld-Vlădut bound for every square prime power q.
These constructions are a lot simpler than the constructions due to Ihara or
Tsfasman et al [190]. In a significant recent development, Shum et al [167]
(see also [166]) present a near-cubic time algorithm to compute the generator
matrix of the codes corresponding to the algebraic curves from [66]. We record
the above discussion in the following statement:

Fact 6.43 For every q which is an even power of a prime, there is a polyno-
mial time construction of algebraic-geometric codes whose rate R and relative
distance δ satisfy

140 6 Reed-Solomon and Algebraic-Geometric Codes

R + δ ≥ 1− 1√
q − 1

.

The above trade-off is often referred to as the “TVZ bound”.

As a corollary we have the following which gives good constructions of
codes with fractional list decoding radius (1− ε).

Corollary 6.44. For every ε > 0, there exist a polynomial time constructible
family Cε of AG-codes with rate R(Cε) = Ω(ε2), relative designed distance
δ(Cε) ≥ (1 − O(ε2)) over an alphabet of size q(Cε) = O(1/ε4). Applying the
Johnson bound from Theorem 3.2, we have LDRL(Cε) ≥ 1−ε for L = O(1/ε2).

By Theorem 6.40, we have a polynomial time algorithm to list decode an
AG-code of relative designed distance δ up to a fractional radius (1−√1− δ).
Using this result on the codes from the above corollary, we get the following:

Theorem 6.45. For every ε > 0, there exists a polynomial time constructible
family of AG-codes with the following properties:

(i) It is defined over an alphabet of size O(1/ε4).
(ii) It has rate Ω(ε2) and relative distance at least (1−O(ε2)).
(iii) There exists a representation of each code of the family, of size polyno-

mial in its blocklength, given which there is a polynomial time decoding
algorithm to list decode the code up to a fraction (1− ε) of errors, using
lists of size O(1/ε2).

The above result gives codes of very good list decodability (list decoding
radius (1−ε)) and reasonable (namely, Ω(ε2)) rate. The result of Theorem 5.4
implies that the best possible rate for codes with such list decodability is
Θ(ε) (for an alphabet size of 1/εO(1)). Hence the above result, while pro-
viding a non-trivial and interesting trade-off between list decodability and
rate for codes over a large alphabet, is not optimal. Moreover, the decoding
complexity of the codes is quite high due to the corresponding situation for
algebraic-geometric codes. It is also not known (at least so far) if the repre-
sentation of the code necessary for decoding can be found in polynomial time
(we only know that it is succinct).10 In light of these limitations of the result
of Theorem 6.45, in Chapter 9, we will return to the question of alternate
lower complexity constructions of codes that are efficiently list decodable up
to a fraction (1− ε) of errors.

10Though, judging by the recent progress made by [167] on the question of the
generator matrices of such codes, we believe an answer in the affirmative to this
question will be found soon.

6.4 Concluding Remarks and Open Questions 141

6.4 Concluding Remarks and Open Questions

We have given a polynomial time algorithm to decode up to a fraction
(1 − √

1− δ) of errors for Reed-Solomon codes of relative distance δ. We
also generalized the algorithm for the broader class of algebraic-geometric
codes. Our algorithm is able to correct a number of errors exceeding half the
minimum (designed) distance for any rate. We also presented soft decoding al-
gorithms for these codes. The main results of this chapter are Theorems 6.16,
6.20, and 6.26 for Reed-Solomon decoding, and Theorems 6.40 and 6.41 for
list decoding AG-codes.

The Reed-Solomon list decoding algorithm, in addition to its obvious
importance to coding theory and practice, is also at the core of several
complexity-theoretic applications. The main common theme of these applica-
tions is to deduce average-case hardness results for certain functions based on
worst-case hardness assumptions. List decoding provides a way to “recover”
the codeword even when several symbols are in error, and this (roughly) cor-
responds, in the complexity theory applications, to being able to compute
the function on every input given, say, a circuit to compute it (or a related
function) on a small fraction of the inputs. More details on these applications
can be found in Chapter 12.

The Reed-Solomon decoding algorithm is also used in list decoding al-
gorithms for Reed-Muller codes, using clever reductions of the multivariate
polynomial reconstruction problem to the univariate polynomial reconstruc-
tion problem (cf. [12, 182]).

Some natural questions left open regarding the material of this chapter are
mentioned below. The first question concerns the true limit on the number
of efficiently correctable errors for Reed-Solomon codes.

Question 6.46. Can one efficiently list decode a family of Reed-Solomon codes
of rate r beyond a fraction (1−√r) of errors? As a first step, what is the true
list decoding radius (for polynomial-sized lists) for Reed-Solomon codes?

Partial progress on the latter question above for decoding with constant-
sized lists appears in [113, 156]. (As mentioned earlier, these results provide
good evidence that the performance of Theorem 6.10 is tight for decoding
with constant-sized lists.) We conjecture that asymptotically, (1−√r) is the
largest fraction of errors that can be decoded with polynomial-sized lists for
Reed-Solomon codes of rate r, for every value of the rate r. If true, this
will make our decoding algorithm for Reed-Solomon codes optimal in terms
of the fraction of errors corrected. A resolution of this conjecture appears
rather difficult, though. In the initial version of this work, we had posed the
following question concerning the computational complexity of list decoding
Reed-Solomon codes.

Question 6.47. Is there a near-linear time (i.e., O(n1+o(1)) time) list decoding
algorithm for decoding an [n, k + 1, n− k] Reed-Solomon code up to a radius
n− (1 + ε)

√
kn (for ε > 0 a fixed, but arbitrarily small constant)?

142 6 Reed-Solomon and Algebraic-Geometric Codes

Recall that the best runtime discussed here is quadratic in the blocklength.
Alekhnovich [4] has since answered the above question in the affirmative, and
given a O(n logO(1) n) time algorithm for list decoding Reed-Solomon codes
to a radius close to the Johnson bound.

Question 6.48. For a family of AG-codes that meet the Drinfeld-Vlădut
bound (for example the codes based on the Garcia-Stichtenoth tower of func-
tion fields), can one compute the non-standard representation necessary for
our list decoding algorithm from Section 6.3.5 in polynomial time?

A careful inspection of the work of Shum et al [167, 166] should be useful
in attempting to answer the above question in the affirmative.

6.5 Bibliographic Notes

The first time Reed-Solomon codes appeared as codes was in 1960 in the
work of Reed and Solomon [154], though they had already been explicitly
constructed by Bush [35] in 1952, using the language of orthogonal arrays.
Though their importance was not immediately realized, Reed-Solomon codes
have since received a lot of attention and study. The Reed-Solomon decoding
problem itself has a long history and is one of the central problems in all of
coding theory. The first polynomial time algorithm to decode up to half the
distance was discovered by Peterson [153], even before the notion of polyno-
mial time was formalized as a metric of feasibility of an algorithm! Owing to
the importance of the problem, several works have investigated more efficient
implementations of the algorithm: here we mention the Berlekamp-Massey
algorithm [23, Section 7.4], [137] and the Euclid-based algorithm [26, Chap-
ter 7], [183]. These are “syndrome computation” based algorithms, and have
quadratic runtimes which can be improved to near-linear time (specifically,
O(n logO(1) n) field operations) using Fast Fourier Transform based meth-
ods (cf. [111]). Other algorithms with quadratic runtimes for decoding Reed-
Solomon codes, and which involve no explicit “syndrome computation”, are
the Berlekamp-Welch algorithm [196] and Blahut’s time-domain decoder [26,
Chapter 9].

However, these algorithms are all limited by the combinatorial barrier of
half the distance of the code. Despite several years of research, there were no
known efficient algorithms to correct significantly more errors by resorting
to the list decoding approach. The only improvements over the algorithm of
Peterson [153] (in terms of number of errors corrected) were decoding algo-
rithms due to Sidelnikov [168] and Dumer [45] which corrected d

2 + Θ(log n)
errors in polynomial time. The first significant breakthrough in terms of er-
rors corrected came when Sudan [178, 179] gave an algorithm to correct
(about) n −√

2n(n− d) errors. His algorithm improved over the classical
d/2 bound for all rates less than 1/3, and for low-rates corrected almost

6.5 Bibliographic Notes 143

twice as many errors than the previous algorithms. Sudan’s algorithm builds
upon ideas from earlier work by Ar, Lipton, Rubinfeld and Sudan [11], and
an elegant presentation of the Berlekamp-Welch decoding algorithm due to
Gemmell and Sudan [67]. (We should mention that it is non-trivial to ferret
out this particular view of the Berlekamp-Welch algorithm from the original
paper [196].) Despite the very good performance for low rates, for rates larger
than 1/3, Sudan’s algorithm did not give any improvement over the classical
algorithms, and even for lower rates fell short of decoding up to the Johnson
bound on list decoding radius.

Following the result of [178], Roth and Ruckenstein [155] investigated ef-
ficient implementations of the algorithm, and obtained a near-quadratic time
bound (for decoding with constant-sized lists). Portions of this result were
used in Section 6.2.7. Also, Shokrollahi and Wasserman [165] generalized the
algorithm to algebraic-geometric codes. However, the error-correction capa-
bilities of these algorithms were all limited to half the distance for large rates.

The decoding algorithm discussed in this chapter, which decodes both
Reed-Solomon and algebraic-geometric codes up to the Johnson radius and
hence beyond half the distance for every value of the rate, appears in [88].
This result sparked a renewed interest in decoding Reed-Solomon and AG-
codes.

Several works investigated questions about the efficient implementation
of the polynomial time algorithm for Reed-Solomon codes from [88]. Nielsen
and Hφholdt [147] presented a fast implementation of the interpolation step
of the decoding algorithm, which we referred to in Section 6.2.7, though they
did not present an explicit runtime analysis. Independently, Olshevsky and
Shokrollahi [150] gave efficient algorithms for the solving the interpolation
step based on a general “displacement method” applied to find non-zero ele-
ments in the kernel of certain structured matrices. Gao and Shokrollahi [63]
presented efficient algorithms for the root-finding step. The work of [155] and
[63] both needed to find roots of univariate polynomials over Fq to solve the
second step of the decoding algorithm. This was avoided by Augot and Pec-
quet [18], who presented an efficient implementation of the second step based
on Hensel lifting. Their result gives the only known deterministic strongly
polynomial time implementation of the list decoding algorithm, though it
applies only to the earlier algorithm of Sudan [178], and not the general
“multiplicity” based algorithm discussed in this chapter. Subsequent to the
publication of [88], Alekhnovich [4] obtained a near-linear time implementa-
tion of the Reed-Solomon list decoding algorithm. The crux of his work was a
near-linear time Groebner basis based algorithm to solve the weighted curve
fitting algorithm, obtained by generalizing the classical Knuth-Schönhage al-
gorithm for computing the GCD of two polynomials to solve arbitrary linear
Diophantine systems over polynomials in time near-linear in the maximal
degree.

144 6 Reed-Solomon and Algebraic-Geometric Codes

The soft (or weighted) decoding algorithm for Reed-Solomon codes, and
its counterpart for AG-codes, have also sparked a lot of interest. Prior to the
result of Theorem 6.26, the only general, provable soft decoding algorithms
for Reed-Solomon codes appear to be the Generalized Minimum Distance
(GMD) decoding algorithm due to Forney [59], which gave a (unique) soft
decoding algorithm that worked under a fairly general condition, and the im-
provement by Berlekamp [25] who gave a very efficient soft-decision decoding
algorithm that expanded the error-correction radius by 1 (compared to GMD
decoding). Koetter and Vardy [121] investigate the best setting of weights for
use in the soft list decoding algorithm when decoding under fairly general
probabilistic channels. The soft decoding algorithms are also exploited in de-
coding concatenated codes [89, 145, 80], and this will be discussed in detail
in Chapter 8.

The unique decoding problem for AG-codes has been considered by several
authors for over a decade. Some of the notable works are [114, 173, 152, 115,
58], and these gave decoding algorithms to unambiguously decode an AG-
code of designed distance d∗ up to �(d∗ − 1− r)/2� errors where r is some
integer between 0 and the genus g. The last of these works could in fact
efficiently decode up to half the designed distance, i.e., up to �(d∗ − 1)/2�
errors. The first list decoding algorithm for AG-codes, that could decode well
beyond half the designed distance at least for low rates, appeared in the work
of Shokrollahi and Wasserman [165]. They generalized Sudan’s list decoding
algorithm for Reed-Solomon codes [178, 179] to AG-codes. Their algorithm
was improved in [88], and the resulting algorithm, which was discussed in
this chapter, can decode beyond half the designed distance for every value of
the rate.

The algorithm presented in [88] for AG-codes actually only gave a poly-
nomial time reduction of the list decoding problem to certain algorithmic
tasks over the underlying function field, including the task of finding roots
of univariate polynomials over the function field. It was, however, not clear
how to implement the corresponding steps efficiently for every function field.

Accordingly, the complexity of these steps has been studied by several
authors, including Gao and Shokrollahi [63], Hφholdt and Nielsen [146], Wu
and Siegel [200], and Augot and Pecquet [18]. However, none of the results
provide a general polynomial time algorithm for all function fields. This is
due to the following two reasons: (a) Either these algorithms work only for
specific function fields; for example the algorithms in [146] work for function
fields of Hermitian curves, and those in [63] work for function fields of nonsin-
gular plane algebraic curves, or (b) as in [18, 200], the algorithms reduce the
concerned questions to certain “more basic” algorithmic tasks on function
fields, and it is not clear how to perform even these “basic” tasks efficiently
for every function field.

The approach taken in this chapter was to build upon some of the above-
mentioned works to show that there is a polynomial amount of precomputed

6.5 Bibliographic Notes 145

information, given which we can have a completely general solution to the list
decoding problem for AG-codes. This approach was taken in the paper [92].
Independently of our work, Matsumoto [138] also gave a completely gen-
eral implementation of the list decoding algorithm for AG-codes discussed in
Section 6.3.3, and his algorithms also require only a polynomial amount of
precomputed information as advice.

Much of the technical content discussed in this chapter appears in the
papers [88, 92], though our presentation here is a lot more integrated and
elaborate in nature.

7 A Unified Framework for List Decoding of

Algebraic Codes

Be wise! Generalize!
Piccayune [sic] Sentinel

7.1 Introduction

In the previous chapter we presented list decoding algorithms for two widely-
studied families of algebraic codes: Reed-Solomon codes and AG-codes. Ow-
ing to the importance of these codes, these results can be viewed as providing
strong evidence to the general utility of list decoding as an algorithmic no-
tion. Indeed, as we shall see in future chapters, they set the stage for a whole
body of results about list decoding.

The reader might have already noticed a great deal of similarity between
the general structure of the decoding algorithms for Reed-Solomon codes and
AG-codes. Since Reed-Solomon codes are a special instance of AG-codes, the
decoding algorithm for AG-codes is just a generalization of the Reed-Solomon
decoding algorithm, and this should explain the great deal of similarity be-
tween the algorithms. In this chapter, we will present a further generalization
of the decoding algorithm by presenting a unified algorithm for soft decod-
ing a general family of algebraic codes (which we call ideal-based codes). The
decoding algorithms for Reed-Solomon and AG-codes are then just special
cases of this general paradigm. Such a unified framework for list decoding is
important for two reasons. Firstly, such unifications are elegant and highlight
the essence of the idea without any vagaries that might result from a specific
situation. Secondly, it reduces the list decoding problem for specific instan-
tiations of ideal-based codes, including the Reed-Solomon and AG-codes we
studied in the previous chapter, to the efficient implementation of certain
core algorithmic steps when applied to the specific context in question. To
illustrate this point, after developing the general list decoding algorithm, we
will apply it to a “new” situation, namely to list decoding Chinese Remainder
codes (henceforth, CRT codes).

Recall that CRT codes, also called Redundant Residue codes, are the
number-theoretic analog of Reed-Solomon codes. They are defined by picking
n relatively prime integers p1 < p2 < · · · < pn. The messages m of the code

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 147-175, 2004.
© Springer-Verlag Berlin Heidelberg 2004

148 7 A Unified Framework for List Decoding of Algebraic Codes

are integers in the range 0 ≤ m <
∏k

i=1 pi for some k, 1 ≤ k < n. A message m
is encoded by its residues modulo all the pi’s, i.e., m �→ 〈m mod p1, m mod
p2, . . . , m mod pn〉. By the Chinese Remainder theorem, the message m is
uniquely specified by any k of its residues modulo p1, p2, . . . , pn, and hence the
above forms a redundant encoding of the message m. Indeed, this argument
shows that two codewords (corresponding to encodings of m1, m2 with m1
=
m2) differ in at least (n − k + 1) positions. Hence, the distance of the code
can be shown to equal (n− k + 1).

There has been a lot of interest in decoding CRT codes [133, 134, 72, 31],
but all these works fall short of list decoding CRT codes up to the Johnson
radius, and in fact even fall short of decoding to half the minimum distance
in general.1

Our general weighted list decoding algorithm for ideal-based codes, when
applied to the case of CRT codes with a specific choice of weights (the ex-
act choice ends up being a non-trivial guess), almost immediately gives an
improvement to the prior results and decodes up to close to the Johnson
bound. In fact, by choosing the parameters in the algorithm appropriately,
the algorithm can decode up to the corresponding “weighted” Johnson bound
(see Theorem 7.10) for every choice of weights. We also give a more efficient
algorithm based on the Generalized Minimum Distance (GMD) decoding, to
decode CRT codes up to half the minimum distance. GMD decoding was
first discovered by Forney [60], who applied it to the soft decoding of Reed-
Solomon codes.

We should mention here that by the very nature of the topic, the contents
of this chapter are somewhat heavy on algebra. The results of this chapter
put the algorithms from the previous chapter in a unified context and thus
elucidate them better, but they are not necessary to the understanding of
the results in the following chapters.

7.1.1 Overview

We begin in the next section by discussing the necessary preliminaries and
terminology from commutative algebra concerning rings and ideals. These
will be necessary for the definition of ideal-based codes and in the develop-
ment of the list decoding algorithm for ideal-based codes. In Section 7.3 we
give a formal definition of ideal-based codes and explain how Reed-Solomon
codes, AG-codes and CRT codes can all be obtained as specific examples
of ideal-based codes. In Section 7.4 we enlist some basic assumptions about
the underlying rings and ideals, and prove the basic distance property of
ideal-based codes. We add some further assumptions and develop a general

1This limitation is for the Hamming metric of measuring distance between the
received word and the codewords. Indeed, the result of [72] provides a list decoding
algorithm to decode up to the Johnson bound for a certain “natural” weighting of
codeword positions of the CRT code.

7.2 Preliminaries 149

weighted (soft) list decoding algorithm for ideal-based codes in Section 7.5.
We then apply the results to the specific context of CRT codes in Section 7.6
and obtain a polynomial time soft decoding algorithm for CRT codes. We
then apply it to specific interesting choices of weights to deduce results for
CRT codes that decode up to the Johnson bound. Finally, in Section 7.7, we
discuss the GMD decoding algorithm to decode CRT codes up to half the
minimum distance.

7.2 Preliminaries

We quickly recall the basic algebraic definitions necessary for this chapter.
If necessary, the reader can find further details and examples in any of the
standard algebra texts (eg. [14]).

Rings: A ring is an algebraic structure (R, +, ·) consisting of a set R together
with two binary operations (+, ·), normally called addition and multiplication
respectively, which satisfy the following axioms:

– R is an abelian group under the operation +, with identity denoted by 0.
This abelian group is denoted by R+.

– R is closed under the operation ·, and ∀ x, y, z ∈ R we have
– x · y = y · x (Commutativity)
– x · (y · z) = (x · y) · z (Associativity)
– x · (y + z) = x · y + x · z (Distributive property of · over +)

– There exists an identity element for multiplication, denoted by 1, which
satisfies 1 · x = x · 1 = x for every x ∈ R.

The terminology relating to rings is not completely standardized. In some
texts, rings are defined without the requirement of the commutativity of
multiplication and/or the existence of the multiplicative identity 1. In their
terminology, the above definition will correspond to a subclass of rings called
commutative rings with identity. We will work exclusively with commutative
rings with identity, and hence we included these axioms in our definition of
rings.

A ring is said to be an integral domain if a ·b = 0 implies that either a = 0
or b = 0 or both. All rings we deal with will be integral domains.

A field is a ring together with the additional property that for every
non-zero element x ∈ R, there exists a unique inverse x−1 ∈ R such that
x ·x−1 = x−1 ·x = 1. In other words, a field is a ring whose non-zero elements
form an abelian group under the multiplication operation.

Ideals:
An ideal I of a ring R is, by definition, a subset of R with the following

properties:

(i) I is a subgroup of R+.
(ii) If a ∈ I and r ∈ R, then r · a ∈ I.

150 7 A Unified Framework for List Decoding of Algebraic Codes

In any ring, the set of multiples of a particular element a forms an ideal called
the principal ideal generated by a, and is denoted (a). The set consisting of
0 alone is always an ideal called the zero ideal, and is denoted (0). Likewise,
the whole ring R is also an ideal (generated by the element 1), called the unit
ideal, and is denoted (1).

One can define sum, product and intersection operations on ideals as
follows. The intersection of ideals I, J is simply their intersection as subsets
of R. The sum of I, J is defined as I + J = {a + b : a ∈ I and b ∈ J}. The
product of I and J , denoted I · J (or, IJ), is defined to be all finite linear
combinations of the form a1b1+a2b2+ . . .+ambm where each ai ∈ I and each
bi ∈ J . In other words, IJ is the smallest ideal which contains all elements of
the form ab where a ∈ I and b ∈ J . It is easily checked that if I, J are ideals
of R, then so are I ∩ J , I + J and IJ . Note that for every pair of ideals I
and J , IJ ⊆ I ∩ J . For an ideal I, the power ideal In, for n ≥ 1, is defined
in the obvious way as: In = I if n = 1, and In = I · In−1 if n > 1.

Quotient rings: Let I be an ideal of a ring R. Consider the relation on R
defined by a ∼ b if a − b ∈ I. It is easily checked that ∼ is an equivalence
relation, and therefore it partitions R into equivalence classes. These equiv-
alence classes are called the cosets of the ideal I. For a ∈ R, we denote by
a/I the coset to which a belongs. The set of cosets of I themselves form a
ring, denoted R/I, by inheriting the addition and multiplication operations
from R. Specifically, one defines (+, ·) for R/I by: a/I + b/I

def= (a+ b)/I and
a/I ·b/I

def= (a ·b)/I. It is easy to check that these operations are well-defined
and that R/I forms a ring under these operations. The ideals of R/I are in
one-one correspondence with the ideals of R that contain I.

As an example, if R = Z and I = (n) is the ideal generated by n, then
R/I = Z/(n) is the ring of integers modulo n.

Prime and Maximal Ideals:

An ideal I of a ring R is a prime ideal if a · b ∈ I implies that at least
one of a, b belongs to I. This is equivalent to the condition that the quotient
ring R/I is an integral domain. The terminology “prime ideal” comes from
the fact that if R is the ring of integers Z and I = (m) is the ideal generated
by an integer m, then I is a prime ideal if and only if m is a prime number.

An ideal I is a maximal ideal if I
= R and I
⊆ J for any ideal J
= I, R.
An equivalent definition is that I is maximal iff the quotient ring R/I is a
field.

Two ideals I, J of R are said to be coprime if I +J = R (i.e., if 1 ∈ I +J).
The terminology comes from the fact that if the ring R = Z and I = (m)
and J = (n) for integers m, n, then I, J are coprime ideals if and only if m, n
are coprime integers. For coprime ideals I, J , we have IJ = I ∩ J .2

2The easy proof of this fact goes as follows. Since IJ ⊆ I ∩ J , we only have to
prove that if f ∈ I ∩ J and I + J = R, then f ∈ IJ . Let a ∈ I and b ∈ J be such

7.3 Ideal-Based Codes 151

7.3 Ideal-Based Codes

We now describe the basic principle that underlies the construction of several
families of algebraic error-correcting codes, including Reed-Solomon codes,
Algebraic-geometric codes, Chinese Remainder codes (and also Number field
codes [127, 77]).

An algebraic error-correcting code is defined based on an underlying ring
R (assume it is an integral domain), whose elements r come equipped with an
appropriate notion of “size”, denoted size(r). For example, for Reed-Solomon
codes, the ring is the polynomial ring F[X] over a (large enough) finite field
F, and the “size” of f ∈ F[X] is related to its degree as a polynomial in X .
Similarly, for the CRT code, the ring is Z, and the “size” is the usual absolute
value.

The messages of the code are the elements of the ring R whose size is
at most a parameter B (this parameter governs the rate of the code). The
encoding of a message m ∈ R is given by

m �→ Enc(m) = 〈m/I1, m/I2, · · · , m/In〉 ,

where Ij , 1 ≤ j ≤ n are n pairwise coprime ideals of R (we will assume that
each of the quotient rings R/Ij is finite). Here m/Ij denotes the residue of
m modulo the ideal Ij , and will belong to a finite alphabet whose size equals
|R/Ij |. The formal definition follows:

Definition 7.1. Let R be an integral domain; let I1, I2, . . . , In be n pairwise
coprime ideals in R such that each R/Ij is finite, and let B be an arbitrary
positive real. Further assume that there is a non-negative function size : R →
R+ that associates a non-negative size with each element of the ring R. Then,
the “ideal-based” code C[R; I1, I2, . . . , In; size, B] is defined to be the set of
codewords

{〈m/I1, m/I2, . . . , m/In〉 : m ∈ R ∧ size(m) ≤ B} (7.1)

7.3.1 Examples of Ideal-Based Codes

Chinese Remainder codes (CRT codes): Taking R = Z; Ij = (pj), the
principal ideal generated by the n mutually coprime integers p1, p2, . . . , pn;
and size(m) = |m|, the absolute value of m, we get the definition of CRT
codes from the above definition.

Reed-Solomon codes: We get the Reed-Solomon code from the above def-
inition by taking R = Fq[X] where Fq is a finite field with at least n elements
(i.e. q ≥ n), and Ij = (X − αj) — the ideal generated by the polynomial

that a + b = 1. Now, f = f · (a + b) = f · a + f · b. Now, clearly both f · a and f · b
belong to IJ . Hence f ∈ IJ , as desired.

152 7 A Unified Framework for List Decoding of Algebraic Codes

(X −αj) — for 1 ≤ j ≤ n, where α1, . . . , αn are distinct elements of Fq. The
notion of size is defined by size(p) = qdeg(p). In other words, the messages are
polynomials in Fq[X] of degree at most k, for some parameter k.

Algebraic-geometric codes: We now describe how the AG-codes from the
previous chapter can also be obtained as a special case of ideal-based codes.
Let K/Fq be a function field and P0 be any fixed place of K/Fq. For i ≥ 0, let
L(iP0) be the set of functions in K which have no poles outside P0 and have
at most i poles at P0. To specify an AG-code in the above ideal-theoretic
language, we take the ring R =

⋃
i≥0 L(iP0), and the ideal Ij to be a place

Pj such that P1, P2, . . . , Pn and P0 are all distinct places. (Recall from the
previous chapter that a place P is by definition the unique maximal ideal of
the ring OP of regular functions at P , and since clearly OP ⊆ R if P
= P0,
such a place can also be viewed as an ideal of R.) The notion of size we use is
related to the pole order at the place P0; specifically we set size(x) = q−vP0 (x).
Hence the set {x ∈ R : size(x) ≤ qα} equals L(αP0), as with the usual
definition of AG-codes.

7.4 Properties of Ideal-Based Codes

We now develop a set of axioms/assumptions about the ring R which will
allow us to quantify the distance properties of the ideal-based code defined
in Equation (7.1) above. We will later add a few further assumptions which
will allow us to specify a unified list decoding algorithm for ideal-based codes
and perform a quantitative analysis of its error-correction capabilities.

7.4.1 Axioms and Assumptions

Let R be an integral domain (a commutative ring where a · b = 0 implies
either a = 0 or b = 0). We assume the following properties for the ring R:

1. [Size of Elements]: There exists a function size : R → R such that for all
x, y ∈ R:
(S1) size(x) ≥ 0, and size(x) = 0 ⇔ x = 0, and size(1) = size(−1) = 1.
(S2) There exists an integer 1 ≤ a ≤ 2 such that size(x + y) ≤ a ·

max{size(x), size(y)}; in other words, size satisfies a certain kind of
“triangle” inequality.3

(S3) size(xy) ≤ size(x)size(y)
2. [Size of Ideals]: There exists a function Δ that maps each non-zero ideal

I of R to a positive real number Δ(I) such that
(I1) If x is a non-zero element of an ideal I, then Δ(I) ≤ size(x).
(I2) For every pair of coprime ideals I, J , Δ(IJ) ≥ Δ(I)Δ(J).

3We point out that it is a well-known fact that if the stated inequality holds
for some a ≤ 2, then the “regular” archimedean triangle inequality size(x + y) ≤
size(x) + size(y) also holds. Hence the name “triangle inequality” for this property.

7.5 List Decoding Ideal-Based Codes 153

The above axioms suffice to define a code and state the distance property
that the code will satisfy.

7.4.2 Distance Property of Ideal-Based Codes

Lemma 7.2. Assume that the assumptions (S1-S3) and (I1, I2) hold. Con-
sider the code C[R; I1, . . . , In; size, B] where the ring R satisfies the above
assumptions (S1-S3) and (I1, I2). Assume further that the ideals Ij are or-
dered so that Δ(I1) ≤ Δ(I2) ≤ · · · ≤ Δ(In). Then the minimum (Hamming)
distance of this code is at least (n − t + 1) where t is the smallest integer
satisfying:

t∏
i=1

Δ(Ii) > a · B .

Proof: Let two distinct codewords in C corresponding to messages x, y agree
on s residues, and let t be as in the statement of the lemma. We will show
that s < t. Since size(x) ≤ B and size(y) ≤ B, we have size(x − y) ≤ a · B
by axiom (S2). On the other hand, (x − y) belongs to at least s ideals, and
since the Ij ’s are pairwise coprime, (x− y) belongs to the product of at least
s ideals, say that of Ij1 , . . . , Ijs . Then, using axioms (I1) and (I2), we have

size(x− y) ≥ Δ
(s∏
i=1

Iji

) ≥ s∏
i=1

Δ(Iji) ≥
s∏

i=1

Δ(Ii) .

Together with size(x− y) ≤ aB, this implies that

s∏
i=1

Δ(Ii) ≤ aB <

t∏
i=1

Δ(Ii) ,

which shows that s < t and completes the proof. �
To quantify the rate of these codes, we need a lower bound on the number

of elements of R that have size at most B. We will later add axioms that
guarantee this and further properties about the size of ideals that we will
need to argue about the performance of our list decoding algorithm. We now
turn to the specification of our list decoding algorithm.

7.5 List Decoding Ideal-Based Codes

We directly tackle the general “weighted” list decoding problem which is de-
scribed below. We use the notation from the previous section and focus on
list decoding an ideal-based code C[R; I1. . . . , In; size, B] with message space
M = {x ∈ R : size(x) ≤ B}.

154 7 A Unified Framework for List Decoding of Algebraic Codes

Input: A vector r = 〈r1, . . . , rn〉 where ri ∈ R/Ii for 1 ≤ i ≤ n, non-negative
real weights w1, w2, . . . , wn, and agreement parameter W .

Required Output: A list of all m ∈ M such that
∑n

i=1 wiai > W where ai is
defined to be equal to 1 if m/Ii = ri and 0 otherwise.

To describe our list decoding algorithm, we assume the weights are some ap-
propriate integers z1, z2, . . . , zn. Our algorithm will then output all codewords
that satisfy a certain weighted condition in terms of the zi’s. The descrip-
tion of how to pick the zi’s to get useful results for specific input weights
w1, w2, . . . , wn will be described later when we apply the general algorithm
to the case of the CRT code.

7.5.1 High Level Structure of the Decoding Algorithm

Before formally describing the algorithm, we first give some intuition on how
it is designed based on the earlier Reed-Solomon decoding algorithm. Recall
that our goal is to efficiently find a list of all m ∈ R with size(m) ≤ B such
that C(m) and the received word r have sufficient weighted agreement.

Following the Reed-Solomon and AG-codes case, the basic idea will be
to “interpolate” a polynomial c ∈ R[y] (based on the received word r) with
the property that every m for which C(m) has sufficient weighted agreement
with the received word must be a root of the polynomial c(y) (this polynomial
c was called Q in the algorithms of the previous chapter). Then, by finding
the roots of c(y) and pruning out the spurious roots, we can recover all the
codewords with sufficient weighted agreement with r.

We are able to construct such a polynomial c by pursuing two objectives,
which are in turn adaptations of the objectives from the case of decoding
Reed-Solomon and AG-codes:

1. To ensure that the polynomial c has the property that for any m ∈ R
that satisfies m/Ii = ri, we have c(m) ∈ Mi, for some suitable sequence
of coprime ideals Mi, i = 1, 2, . . . , n. This in turn implies that for any
m ∈ R we have c(m) ∈ ∏

i Mai

i , where ai = 1 if m/Ii = ri, and ai = 0
otherwise.

2. To ensure that the coefficients cj of c(y) =
∑�

j=0 cjy
j are small, i.e.,

each size(cj) is sufficiently small. The aim of this step is to ensure that
size(c(m)) is small, say size(c(m)) < F , for every m with size(m) ≤ B.

By combining Objectives 1 and 2, we see that for any m ∈ R with
size(m) ≤ B, c(m) on the one hand has size less than F , and on the other
hand belongs to

∏
i Mai

i . Hence if, c(m)
= 0, we must have

F > size(c(m)) ≥ |R/Mi|ai , (7.2)

where the second step uses axioms (I1), (I5). Therefore, if the boolean “agree-
ment” vector a = 〈a1, a2, . . . , an〉 between C(m) and r satisfies the weighted
condition

7.5 List Decoding Ideal-Based Codes 155∑
i

ai log |R/Mi| > log F ,

then Condition (7.2) cannot hold, and hence we must have c(m) = 0. Natu-
rally, the performance of the algorithm depends on the choices of the ideals
Mi and the parameter F . Our algorithm will pick Mi = Izi

i (where zi’s are
the input integer weights), and F to be a sufficiently large integer for which a
polynomial c ∈ R[y] meeting Objectives 1 and 2 exists. Precise details follow
in the next section.

7.5.2 Formal Description of the Decoding Algorithm

Before describing the algorithm we need some auxiliary definitions and no-
tation.

– Let R[y] be the ring of polynomials in y with coefficients from R.
– For 1 ≤ i ≤ n, let Ji be the ideal in R[y] defined as {a(y)(y − ri) + b(y) ·

p|a, b ∈ R[y] and p ∈ Ii}. It is readily checked that Ji is an ideal in R[y]
and further that if m ∈ R satisfies m/Ii = ri, then c(m) ∈ Ii for every
c ∈ Ji.

The algorithm is formally described in Figure 7.1. We stress that we do not
know efficient implementations of all the steps in the algorithm for a general
ideal-based code, but for specific codes like Reed-Solomon codes and AG-
codes these do have efficient implementations. We will later show how with a
moderate “slack” they can also be implemented in polynomial time for CRT
codes.

(Weighted) List-decoding algorithm:

Input: A vector r = 〈r1, . . . , rn〉 where ri ∈ R/Ii for 1 ≤ i ≤ n, non-negative
integers z1, z2, . . . , zn and parameter Z.

Required Output: A list of all m ∈ M such that
∑n

i=1 ziai > Z (where ai is defined
to be equal to 1 if m/Ii = ri and 0 otherwise).

1. Pick parameters �, F appropriately.
2. Find a non-zero polynomial c ∈∏n

i=1 Jzi
i of degree at most � with the prop-

erty that size(c(m)) ≤ F for every m ∈ R with size(m) ≤ B.
3. Find all roots of c that lie in R and report those roots ζ such that size(ζ) ≤ B

and the condition
∑n

i=1 ziai > Z is satisfied (where ai is defined to be equal
to 1 if ζ/Ii = ri and 0 otherwise).

Fig. 7.1. A general list decoding algorithm for ideal-based codes

156 7 A Unified Framework for List Decoding of Algebraic Codes

7.5.3 Further Assumptions on the Underlying Ring and Ideals

In order to analyze the error-correction capability of the algorithm above, we
add some further axiomatic assumptions. The following assumptions need to
apply only to the ideals I1, . . . , In specified in the construction of the code.

(I3) For each i, we have Δ(Ik
i) ≥ Δ(Ii)k for all positive integers k.

(I4) For each i, we have that |R/Ik
i | ≤ |R/Ii|k for all positive integers k.

(I5) For each i, we have that Δ(Ii) ≥ |R/Ii|.
We also add the following assumption on the number of elements in R

with bounded size. This is not only critical in order to quantify the rate of
the code, but is also used in the analysis of the list decoding algorithm.

(S4) There exists a positive constant α depending only on the ring R such
that for all positive integers F , the number of elements x of R with
size(x) < F is at least αF .

Note that for the CRT code (R = Z), we have α � 2, while for Reed-
Solomon and AG-codes we have α = 1.

7.5.4 Analysis of the List Decoding Algorithm

We now specify the parameter choices in the above algorithm for it to output
all the “relevant” codewords, and determine the exact condition (specifically
the value of the agreement parameter Z) for which the algorithm will succeed
in finding all codewords that satisfy

∑
i aizi > Z.

The following sequence of lemmas will be used in the analysis.

Lemma 7.3. If c ∈ Jzi

i , then for every m ∈ R with m/Ii = ri, we have
c(m) ∈ Izi

i .

Proof: Every c ∈ Jzi

i is the sum of a finite number of terms each of the form

zi∏
s=1

(as(y)(y − ri) + bs(y)ps) ,

where as, bs ∈ R[y] and ps ∈ Ii for 1 ≤ s ≤ zi. Substituting y = m where
m/Ii = ri, we have each of the s terms in the product belongs to Ii, and
hence the entire term belongs to Izi

i . Since this is true for each term of c(m),
it follows that c(m) itself is in Izi

i , as desired. �

Lemma 7.4. For each i, 1 ≤ i ≤ n, |R[y]/Jzi

i | ≤ |R/Ii|(
zi+1

2).

7.5 List Decoding Ideal-Based Codes 157

Proof: We need to estimate the number of different residues that polynomials
in R[y] can have modulo Jzi

i . Let c ∈ R[y] be any polynomial. Expand c(y) in
terms of sums of powers of (y−ri) (i.e., use the change of variable y′ = y−ri,
and write down c(y′ + ri)). Since (y− ri)m ∈ Jzi

i for m ≥ zi, to compute the
residue of c modulo Jzi

i , we can ignore all terms of degree at least zi. Thus
we can assume that

c/Jzi

i =
zi−1∑
s=0

αs(y − ri)s , (7.3)

for suitable coefficients αs. Now since αs(y − ri)s ∈ Jzi

i if αs ∈ Izi−s
i , it

follows that we may assume that αs is reduced modulo Izi−s
i in the above,

or in other words that αs ∈ R/Izi−s
i . Hence the number of possibilities for

αs is at most |R/Izi−s
i | ≤ |R/Ii|zi−s using assumption (I4). Combining with

Equation (7.3), we obtain that the total number of possible residues modulo
Jzi

i , in other words |R[y]/Jzi

i |, is at most

zi−1∏
s=0

|R/Ii|zi−s = |R/Ii|(
zi+1

2) ,

as claimed. �

Corollary 7.5. We have

∣∣R[y]/
n∏

i=1

Jzi

i

∣∣ ≤ n∏
i=1

|R/Ii|(
zi+1

2) .

Proof: First of all, note that since the Ii’s are all coprime (i.e., Ii + Ij = R
for i
= j), we also have the Ji’s to be pairwise coprime. This in turn implies
that the ideals Jzi

i are all pairwise coprime. Therefore,

∣∣R[y]/
n∏

i=1

Jzi

i

∣∣ =
n∏

i=1

|R[y]/Jzi

i | ≤
n∏

i=1

|R/Ii|(
zi+1

2)

where the second step follows from Lemma 7.4. �

Before stating the next lemma, we need the following notation. Let bk be the
least integer such that for all x1, x2, . . . xk ∈ R, we have size(x1 + x2 + · · ·+
xk) ≤ bk max{size(x1), . . . , size(xk)}. We clearly have b1 = 1, b2 ≤ a (recall
that a was the parameter used in the “triangle” inequality (S2)). Of course
if a = 1, then each bk = 1, and one can show that as long as a ≤ 2, bk ≤ k.
(This follows because it is a standard exercise to show that a ≤ 2 implies
size satisfies the “familiar” triangle inequality size(x + y) ≤ size(x) + size(y),
from which of course bk ≤ k follows easily.) Thus, for Reed-Solomon and
algebraic-geometric codes, we have bk = 1 for all k ≥ 1, while for CRT codes
we have bk = k for all k ≥ 1.

158 7 A Unified Framework for List Decoding of Algebraic Codes

Lemma 7.6. For positive integers B, F ′, the number of polynomials c ∈ R[y]
of degree at most � with the property that size(c(m)) < F ′ whenever size(m) ≤
B is at least (

αF ′

b�+1B�/2

)�+1

.

Proof: Consider polynomial c(y) = c0+c1y+ . . .+c�y
� where each cj ∈ R for

0 ≤ j ≤ �. We will pick coefficients so that for any m with size(m) ≤ B, we
will have size(cjm

j) < F ′/b�+1. Note that this will imply that size(c(m)) < F ′

whenever size(m) ≤ B. This requirement on cj will be satisfied if size(cj) <
F ′ ·B−j/b�+1 (here we are using (S3)). Also, by assumption (S4) there at least

αF ′
Bjb�+1

such choices for cj. Hence the total number of polynomials c ∈ R[y]
with the required property is at least

(
αF ′

b�+1

)�+1

·
�∏

j=0

B−j =
(

αF ′

b�+1B�/2

)�+1

,

as claimed. �
We are now ready to prove that for suitable choices of �, F a non-zero

polynomial with the desired properties as in Step 2 of the list decoding algo-
rithm exists in

∏n
i=1 Jzi

i .

Lemma 7.7. Let �, B, F be positive integers which satisfy the following con-
dition:

F ≥ B�/2 ·
(a · b�+1

α

)(n∏
i=1

|R/Ii|(
zi+1

2)
)1/(�+1)

. (7.4)

Then there exists a non-zero c ∈ ∏n
i=1 Jzi

i which satisfies the property that
size(c(m)) < F for every m ∈ R with size(m) ≤ B.

Proof: The proof follows from Corollary 7.5, Lemma 7.6, and the pigeonhole
principle. Specifically, if Condition (7.4) is satisfied, then we have

(
α · F/a

b�+1B�/2

)�+1

>

n∏
i=1

|R/Ii|(
zi+1

2) ,

and thus the number of degree � polynomials c ∈ R[y] with size(c(m)) <
F/a whenever size(m) ≤ B is greater than the total number of residues of
polynomials modulo

∏n
i=1 Jzi

i . Hence, by the pigeonhole principle there must
exist two distinct polynomials c1, c2 ∈ R[y] of degree at most � such that
(c1−c2) ∈

∏n
i=1 Jzi

i . Since size(c1(m)) < F/a and size(c2(m)) < F/a for every
m with size(m) ≤ B, we have by assumption (S2) that size((c1−c2)(m)) < F

for each such m. Thus the claim of the lemma is satisfied with c
def= (c1− c2).

�

7.5 List Decoding Ideal-Based Codes 159

Lemma 7.8. Let c ∈ ∏zi

i=1 Jzi

i be such that size(c(x)) < F for every x ∈ R
with size(x) ≤ B. Then, any m ∈ R that satisfies size(m) ≤ B and∏

i:m/Ii=ri

|R/Ii|zi ≥ F (7.5)

must be a root of c, i.e., must satisfy c(m) = 0.

Proof: Let m be any such element of R. Since size(m) ≤ B, by the property
of c, we have

size(c(m)) < F . (7.6)

Since c ∈ Jzi

i for each i, 1 ≤ i ≤ n, by Lemma 7.3, we have c(m) ∈ Izi

i for
each i such that m/Ii = ri. Hence

c(m) ∈
∏

i:m/Ii=ri

Izi

i .

Now, using assumptions (I1), (I2), (I3) and (I5), we have that if c(m)
= 0,
then

size(c(m)) ≥
∏

i:m/Ii=ri

Δ(Izi

i) ≥
∏

i:m/Ii=ri

Δ(Ii)zi ≥
∏

i:m/Ii=ri

|R/Ii|zi . (7.7)

From (7.7) and (7.6) it follows that if Condition (7.5) is satisfied, we have a
contradiction and therefore must have c(m) = 0, as desired. �

7.5.5 Performance of the List Decoding Algorithm

We are now ready to state and prove the main result of this section on the
performance of our list decoding algorithm from Section 7.5.1.

Theorem 7.9. For every set of non-negative integers z1, z2, . . . , zn, for a
suitable choice of parameters �, F , the list decoding algorithm on receiving as
input a word r = 〈r1, . . . , rn〉 with ri ∈ R/Ii, can find a list of size at most �
which includes all messages m ∈ R with size(m) ≤ B that satisfy

n∑
i=1

aizi log qi >
1

� + 1

n∑
i=1

(
zi + 1

2

)
log qi + log(a/α) + (7.8)

+
�

2
log B + log b�+1 .

where we use the shorthand qi = |R/Ii|, and ai is an indicator variable defined
to be 1 if m/Ii = ri and 0 otherwise.

160 7 A Unified Framework for List Decoding of Algebraic Codes

Proof: The proof follows easily from the statements of Lemma 7.7 and
Lemma 7.8. Indeed, one can choose

F =

⌈
B�/2 ·

(a · b�+1

α

)(n∏
i=1

|R/Ii|(
zi+1

2)
)1/(�+1)

⌉
, (7.9)

and for this choice of F , the algorithm can find a non-zero c ∈∏n
i=1 Jzi

i with
size(c(m)) < F whenever size(m) ≤ B (since by Lemma 7.7 such a c exists).
By Lemma 7.8, the algorithm will output a list of all m ∈ R with size(m) ≤ B
such that

n∏
i=1

qaizi

i ≥ F .

Note that the number of solutions the algorithm outputs is at most �, since it
only outputs a subset of the roots of a degree � polynomial over the integers.
Also, since both the terms on the right and left hand sides of the above
condition are integers, taking logarithms we note that the above condition is
implied by the decoding Condition (7.8) stated in the theorem. �

Remark: There is a natural notion of an “approximate solution” for Step 2 in
the list decoding algorithm. We know that for F defined as in Equation (7.9),
there exists a non-zero polynomial c ∈∏n

i=1 Jzi

i that satisfies size(c(m)) < F
whenever size(m) ≤ B. It is conceivable that, in certain contexts, finding
such a c for this “optimum” choice of F might be difficult to accomplish
efficiently. In such a case, suppose the algorithm only manages to find a non-
zero polynomial c ∈ ∏n

i=1 Jzi

i with a factor β slack in the size guarantee,
namely a polynomial c such that size(c(m)) < F ′ for every m with size(m) ≤
B, where F ′ = βF . Then, it is easy to check that such an algorithm can
decode under a condition similar to (7.8) with an additional logβ term on
the right hand side. We will make use of this fact when considering an efficient
implementation of the decoding algorithm for the specific context of decoding
CRT codes in Section 7.6.2.

7.5.6 Obtaining Algorithms for Reed-Solomon and AG-codes

We now briefly indicate how the Reed-Solomon and AG-code list decoding al-
gorithms from the previous chapter can be obtained from Theorem 7.9 above.
Note that the list decoding algorithm of Figure 7.1 is really only a general
algorithmic schema, and one needs to implement each of its steps efficiently
in order to apply it and get polynomial time list decoding algorithms for
specific families of ideal-based codes. Hence, our aim below is only to show
that this algorithm gives (more or less) the same parameters as the specific
polynomial time algorithms discussed in the previous chapter.

For Reed-Solomon codes over a field Fq, each qi = q, α = 1, and a = 1
in assumption (S2) (and hence b�+1 = 1 as well). If the code is defined by

7.6 Decoding Algorithms for CRT Codes 161

evaluations of polynomials of degree at most k, then since size(p) = qdeg(p),
we have B = qk. Substituting these we get the algorithm finds all codewords
that have “z-weighted” agreement with r more than

1
� + 1

n∑
i=1

(
zi + 1

2

)
+

�

2
k

which for large �, is approximately
√

k
∑

i zi(zi + 1) which approaches the
performance of the soft decoding algorithm for Reed-Solomon codes from
Section 6.2.10 (by taking the zi’s to be large multiples of the weights wi).

For AG-codes over Fq, once again each qi = q, a = 1 and b�+1 = 1. If the
underlying function field has genus g, then α = q−g. Also, B = qα∗

if the
message space of the AG-code is L(α∗P0). Hence Theorem 7.9 implies that
one can find all codewords that have “z-weighted” agreement with r more
than

1
� + 1

n∑
i=1

(
zi + 1

2

)
+

�

2
α∗ + g

which for large � again approaches the performance of the soft decoding
algorithms for AG-codes from Chapter 6.

We already knew the decoding algorithms for Reed-Solomon codes and
AG-codes from the previous chapter, but the above indicates the general-
ity of our decoding algorithm for ideal-based codes. In the next section, we
will exploit the generality of our algorithm from Figure 7.1 to devise a list
decoding algorithm for Chinese Remainder (CRT) codes. Indeed, it was the
design of a good decoding algorithm for CRT codes that motivated us to dig
deeper into the algebra underlying the list decoding algorithms and unveil
the unified decoding algorithm for ideal-based codes described in Figure 7.1.

7.6 Decoding Algorithms for CRT Codes

In this section, we discuss efficient decoding algorithms for the CRT code.
Recall that a CRT code is specified by a sequence p1 < p2 < . . . < pn of rel-
atively prime integers and an integer k < n. Let K =

∏k
i=1 pi; N =

∏n
i=1 pi.

For easy reference, we say such a CRT codes as being specified by parame-
ters (p1, p2, . . . , pn; K). We associate to each integer m ∈ {0, 1, . . . , K−1} the
codeword 〈m1, m2, . . . , mn〉, where mi = m mod pi. We will abuse notation
and refer to both this sequence and m as a codeword. We consider a received
word to be a sequence r = 〈r1, r2, . . . , rn〉 of integers with 0 ≤ ri < pi for each
i ∈ [n]. For a given sequence of weights w = 〈w1, . . . , wn〉, the w-weighted
agreement (or simply weighted agreement, when the weighting we are refer-
ring to is clear) between a codeword m < K and a received word r is the
defined to be the quantity

∑
i aiwi, where ai = 1 if mi = ri, and ai = 0

otherwise.

162 7 A Unified Framework for List Decoding of Algebraic Codes

Our goal in this section is to efficiently find a list of all non-negative
integers m < K such that the encoding of m and the received word r have
sufficient weighted agreement. We note that a simple transformation makes
it equivalent for us to find integers m where |m| ≤ K/2, whose encodings
have sufficient agreement with r. It is this version of the problem that we
focus on for describing our decoding algorithms.

In this section, we present two efficient decoding algorithms for the CRT
code. In the first (which is our main) decoding algorithm, the goal is to ef-
ficiently find a list of all codewords m such that m and the received word r
have sufficient weighted agreement. In particular, we are able to give an effi-
cient list decoding algorithm which outputs all m with |m| ≤ K/2 such that
m mod pi = ri for at least

√
k(n + ε) values of i (for any ε, with the running

time of the algorithm depending polynomially on 1/ε). Thus, we are able to
efficiently list decode the CRT code up to (essentially) the Johnson bound
on list decoding radius (from Corollary 3.3 with distance d = n−k+1). This
improves the earlier works of [72, 31] which could only find the codewords
which agreed with the received word in at least Ω(

√
kn log pn/ log p1) posi-

tions. Our algorithm is obtained by efficient implementations of the steps of
the general decoding algorithm of Figure 7.1, specialized for the case of the
CRT code. This gives a general weighted decoding algorithm which success-
fully list decodes as long as a certain “weighted” condition is satisfied. The
above claimed bound is then obtained by an appropriate choice of weights
in the weighted algorithm (the exact setting of weights turns out to be a
non-trivial guess).

For any sequence of positive weights β, our second decoding algorithm effi-
ciently (in near-quadratic time) recovers the unique codeword m with highest
β-weighted agreement with a received word r, as long as there is a codeword
whose β-weighted distance from r is less than half the β-weighted minimum
distance of the code. This is accomplished by adapting the GMD decoding
algorithm due to Forney, introduced for Reed-Solomon codes in [60], to CRT
codes in Section 7.7. Note that in particular this result gives the first polyno-
mial time algorithm to correct up to (n− k)/2 errors (i.e., decode up to half
the minimum distance) for the CRT code. In view of our more powerful list
decoding algorithm, the main role of this result can be viewed as highlight-
ing the role of GMD decoding in the task of decoding the CRT code, plus
achieving a simpler, faster algorithm for unique decoding of CRT codes.

7.6.1 Combinatorial Bounds on List Decoding

Before delving into the decoding algorithms, we first state a generalized
Johnson-type bound which specifies a fairly general condition under which list
decoding using “small” lists can be performed. This result will indicate the
kind of performance that we can hope for from our list decoding algorithms
for the CRT codes, since in order to efficiently output a list of codewords

7.6 Decoding Algorithms for CRT Codes 163

as possible answers, we need an a priori guarantee that the list size will be
small.

The result below gives a generalization of the weighted Johnson bound
from Chapter 3 (specifically the result of Corollary 3.7) to the case when the
various codeword positions have different contributions towards the distance
of the code.

Theorem 7.10. Let C be a code of blocklength n with the i’th symbol com-
ing from an alphabet of size qi, for 1 ≤ i ≤ n. Let the distance Dα of the
code be measured according to a weighting vector α = 〈α1, . . . , αn〉. In other
words, for any two distinct codewords c1, c2 ∈ C, we have

∑
i:c1i �=c2i

αi ≥ Dα

(assume each αi ≥ 1 without loss of generality). For a weighting vector
β = 〈β1, . . . , βn〉 and a received word r = 〈r1, . . . , rn〉 ∈ [q1]×· · ·× [qn], define
the set Sβ(r, W) to consist of all strings z (in the space [q1]× [q2]×· · ·× [qn])
with weighted β-weighted agreement with r at least W , i.e., which satisfy∑

i:ri=zi
βi ≥ W . Then, for all r, the set Sβ(r, Wβ) has at most

(
2
∑n

i=1 qi

)
codewords from C, provided that:

Wβ ≥
[(n∑

i=1

αi −Dα

) n∑
i=1

β2
i

αi

]1/2

, (7.10)

and has at most L codewords from C, provided that

Wβ ≥
[(n∑

i=1

αi −Dα +
Dα

L

) n∑
i=1

β2
i

αi

]1/2

. (7.11)

Remark: A more complicated and stronger bound than the above theorem
can be proved by taking into account the size of the alphabets qi’s (akin
to the weighted Johnson bound of Theorem 3.6 that took into account the
alphabet size). This is, however, not very important for us since we want
to use the above bound to only informally indicate the “near-tightness” of
the error-correction performance of our list decoding algorithms for the CRT
code, and the above bound suffices for this purpose. Moreover, for the CRT
code the qi’s are typically large primes, and for large alphabets the difference
between the stronger bound and the above bound becomes negligible.

Proof of Theorem 7.10: The proof follows along the lines of Theorem 3.1.
Let β be a weighting vector and W an agreement parameter. Let c1, . . . , cm

be all the codewords in Sβ(r, Wβ), where r ∈ [q1]× · · · × [qn] is the “received
word”.

We will embed elements of [q1] × · · · × [qn] as vectors in RQ where Q =∑n
i=1 qi, with the i’th block being a vector of length qi corresponding to the

i’th symbol. For the received word r, we will let the i’th block (which is of
length qi) have a value of βi/

√
αi at position number ri, and 0’s elsewhere.

By abuse of notation, we denote the resulting vector in RQ also by r. For

164 7 A Unified Framework for List Decoding of Algebraic Codes

each of the codewords cj, 1 ≤ j ≤ m, we will let the i’th block have a value of√
αi at position number cj,i (i.e., the i’th symbol of the codeword cj), and 0’s

elsewhere. Once again, since it is convenient to do so, we denote the resulting
vectors in RQ also by c1, . . . , cm.

It is easy to see from the above choices that 〈cj, r〉 equals the β-weighted
agreement between cj and r (i.e., 〈cj, r〉 =

∑
i:cj,i=ri

βi), and that 〈cj, ck〉
equals the α-weighted agreement between cj and ck. Therefore, we have, for
every 1 ≤ j < k ≤ m,

〈cj, r〉 ≥ Wβ (7.12)

〈cj, ck〉 ≤ Aα
def=

(n∑
i=1

αi −Dα

)
(7.13)

The idea now is to pick a suitable parameter γ > 0 such that the pairwise
dot products between the vectors (cj−γr) are all non-positive. This is similar
to the idea used in the proof of Theorem 3.1, and the details are in fact simpler
in this case (since the conditions under which we want to show a small list
size do not depend on the alphabet sizes qi).

Equations (7.12) and (7.13) together with the facts that 〈r, r〉 =∑n
i=1 β2

i /αi, implies, for j
= k,

〈cj − γr, ck − γr〉 ≤ Aα − 2γWβ + γ2
n∑

i=1

β2
i

αi
. (7.14)

We will therefore have 〈cj − γr, ck − γr〉 ≤ 0, provided

Wβ ≥ γ

2

n∑
i=1

β2
i

αi
+

Aα

2γ
. (7.15)

The right hand side is minimized for γ = (Aα)1/2 · (∑i
β2

i

αi

)−1/2, and for this
choice of γ, Condition (7.15) becomes

Wβ ≥
[
Aα

n∑
i=1

β2
i

αi

]1/2

. (7.16)

Now appealing to the geometric Lemma 3.4, Part (i), we get that the number
of codewords m is at most 2Q (since the pairwise dot products of the Q-
dimensional real vectors (cj − γr) are all non-positive). Thus, the number
of codewords which lie in Sβ(r, Wβ) if Condition (7.16) holds is at most
2Q, which proves the first assertion of the theorem. The second assertion
also follows similarly, by picking the parameter γ such that the pairwise dot
products of the unit vectors along (cj − γr) is at most −1/(L− 1), and then
appealing to geometric Lemma 3.5. We omit the details. �
We now apply the result of Theorem 7.10 to specific choices of α and β for the
CRT code. For a CRT code we have, in the ideal-based language, R = Z and

7.6 Decoding Algorithms for CRT Codes 165

Ii = (pi) for relatively prime integers p1 < p2 < · · · < pn. Hence qi = pi for
1 ≤ i ≤ n. Furthermore the “size” of the ideals satisfy Δ(Ii) = |R/Ii| = pi.
If we consider messages to be integers m in the range −K/2 < m ≤ K/2
where K =

∏k
i=1 pi, then it is easy to prove using ideas in Lemma 7.2 that

the α-weighted distance of the CRT code is

- at least (n− k +1) for the all-ones weight vector (the case when αi = 1 for
every i), and

- at least log(N/K) for case when αi = log pi.

Using these in the bound of Theorem 7.10 we get (roughly) the following
conditions under which CRT list decoding is feasible (combinatorially):∑

i

ai log pi >
√

(log K + ε) log N (7.17)

∑
i

ai >
√

(k + ε)n (7.18)

∑
i

aiβi >
(
(log K + ε)

∑
i

β2
i

log pi

)1/2

(7.19)

(Note that the third condition above implies the first with the choice of
weights βi = log pi.) In fact, the algorithm of Goldreich, Ron, and Sudan [72]
could list decode under the first condition (7.17). In some sense the case αi =
βi is the most natural one for the CRT code. However, neither the algorithm
of [72] nor the improvement due to Boneh [31], could work as well for other
weightings (including the case βi = αi = 1 from the second condition above).
In the next section, we apply our general decoding algorithm for ideal-based
codes to the case of CRT codes to remedy this defect of earlier algorithms,
and give a weighted list decoding algorithm which, by appropriately choosing
the weights, can decode under each of the above conditions.

7.6.2 Weighted List Decoding Algorithm

We now apply Theorem 7.9 to the case of CRT codes and get the following.

Theorem 7.11. For a CRT code with parameters (p1, p2, . . . , pn; K), given a
received word r = (r1, r2, . . . , rn) with 0 ≤ ri < pi, and non-negative integers
� and zi for 1 ≤ i ≤ n, we can find in time polynomial in n, �,

∑
i log pi and∑

i zi, a list of size at most � which includes all codewords m that satisfy

n∑
i=1

aizi log pi > log(� + 1) +
�

2
log K +

1
� + 1

n∑
i=1

(
zi + 1

2

)
log pi , (7.20)

where as usual we define ai = 1 if mi = ri and ai = 0 otherwise.

166 7 A Unified Framework for List Decoding of Algebraic Codes

Proof: We will show that the above condition implies the condition under
which the decoding algorithm of Figure 7.1, when applied to the CRT case,
successfully list decodes the received word. It will then remain to argue that
for the CRT code each of the steps of the algorithm can be implemented in
polynomial time.

For the CRT code, we have |R/Ii| = |Z/(pi)| = pi for 1 ≤ i ≤ n, a = 2,
and b�+1 = �+1 (since the integers satisfy the “familiar” archimedean triangle
inequality). Furthermore, since there are (2F − 1) integers of absolute value
less than F for any positive integer F , we can assume that α ≥ (2 − γ) for
some small γ > 0 (in fact we can take γ = o(1) in the parameters involved).
Also since the messages are integers of absolute value at most K/2, we have
B = K/2. Plugging these parameters into the general bound of Equation
(7.8) we get the condition

n∑
i=1

aizi log pi > log(� + 1) +
�

2
log(K/2) + (7.21)

+
1

� + 1

n∑
i=1

(
zi + 1

2

)
log pi + log(2/(2− γ)) .

Note that in fact the above condition poses a weaker requirement than that
of Condition 7.20 stated in the theorem, since we have an �

2 log(K/2) term
on the right hand side instead of �

2 log K as stated in the theorem — the
additional log(2/(2−γ)) term is of course negligible in comparison. Hence the
general algorithm can also decode under the condition stated in the theorem.
The reason for the slack in Condition (7.20) is that we now also want a
polynomial time implementation of its various steps, and hence can only
find an “approximation” to the best polynomial c ∈ Z[y] in Step 2 of the
algorithm. As discussed in the remark following Theorem 7.9, this necessitates
a slight weakening of the error-correction performance. We discuss the details
next.

The two non-trivial steps in the algorithm of Figure 7.1, when applied to
the CRT code, are (i) finding a non-zero degree � polynomial c with integer
coefficients in the ideal

∏
i Jzi

i such that |c(m)| < F for all m with |m| ≤ K/2,
and (ii) finding the roots of c and looking for candidate codewords among its
roots. The second task can be done in polynomial time using, for instance, the
algorithm for factoring polynomials with integer coefficients due to Lenstra,
Lenstra and Lovász [126].4 For the first task, Lemma 7.7 applied to the CRT
case implies that for

F = �F ∗� where F ∗ def= (� + 1)(K/2)�/2
(∏

i

p
(zi+1

2)
i

)1/(�+1)

,

4Since the root finding task is easier than a general factorization task, there are
faster ways to solve the root finding problem. A brief discussion about this appears
in [72].

7.6 Decoding Algorithms for CRT Codes 167

there exists a non-zero c ∈ ∏
i Jzi

i with |c(m)| < F whenever |m| ≤ K/2
(in fact the coefficients cj of c will satisfy |cj | < F

(�+1)(K/2)j for 0 ≤ j ≤ �).
We will now prove that for F ′ which 2�/2 times larger than F , we can find,
in polynomial time, a c ∈ Z[y] that satisfies |c(m)| < F ′ for every m with
|m| ≤ K/2. We do this by reducing this problem to that of finding a short
lattice vector in a suitably defined lattice, and then appealing to the well-
known approximate shortest lattice vector algorithms due to [126].

We can view degree � polynomials as vectors in Z�+1 in the obvious way.
Note that the ideal J =

∏
i Jzi

i , when restricted to polynomials of degree
at most �, can be viewed as an integer lattice, say L, of dimension (� + 1).
Therefore, finding a suitable non-zero polynomial c ∈ J with small coeffi-
cients amounts to finding a short non-zero lattice vector in L. This can be
accomplished using the LLL algorithm, provided we can compute a basis for
the lattice L. We now demonstrate how this can be done efficiently.

Note that L = ∩iLi where Li is the lattice corresponding to degree � poly-
nomials in Jzi

i , for 1 ≤ i ≤ n. Explicit bases for the individual lattices Li are
easily obtained by considering the generating polynomials for Jzi

i restricted to
polynomials of degree at most �. Let z̃i = min{zi, �}. The first z̃i+1 vectors in
our basis correspond to the generating polynomials {p(zi−a)

i (y−ri)a : 0 ≤ a ≤
z̃i} from the ideal Izi

i . For example, corresponding to pzi−2
i (y − ri)2, we add

the vector (r2
i · pzi−2

i , − 2ri · pzi−2
i , pzi−2

i , 0, . . . , 0). If � > zi, then
we also add vectors corresponding to the polynomials {ya · (y − ri)zi}�−zi

a=1 .
Let M (i) be the (�+1) by (�+1) matrix whose rows are the vectors from this
basis. It is straightforward to check that the integer linear combinations of
these vectors correspond exactly to the set of polynomials of degree at most
� in the ideal Jzi

i .
Thus bases for each Li can be computed efficiently. Using standard tech-

niques (see the discussion immediately following this proof), given bases
for the (full-dimensional) lattices Li, a basis B for the intersection lattice
L = ∩iLi can be computed in polynomial time.

With this basis in hand, our goal is to find a short vector in L (intuitively,
short vectors in the lattice L correspond to polynomials in

∏
i Jzi

i with small
coefficients). We argued earlier that there exists a vector c = (c0, c1, . . . , c�) ∈
L with |cj | ≤ F

(�+1)(K/2)j , and we would like to find a vector in L with
components not much bigger than this. To do so, it is convenient to work with
a re-scaled version L′ of the lattice L where (v0, v1, . . . , v�) ∈ L iff (v0, v1 ·
(K/2), . . . , v� ·(K/2)�) ∈ L′. The vector corresponding to c in L′ has L2-norm
less than F/

√
� + 1. Applying the LLL algorithm to the (� + 1)-dimensional

lattice L′, we can therefore find a non-zero vector w = (w0, . . . , w�) ∈ L′ with
L2-norm ‖w‖2 < 2�/2F/

√
� + 1 in polynomial time. By Cauchy-Schwartz, we

have that the L1-norm of w satisfies ‖w‖1 ≤
√

� + 1 · ‖w‖2 < 2�/2F . Clearly
this implies that the polynomial w(y) = w0 + w1y + . . . + w�y

� satisfies
|w(m)| < 2�/2F whenever |m| ≤ K/2.

168 7 A Unified Framework for List Decoding of Algebraic Codes

Thus one can apply Lemma 7.8 with F replaced by 2�/2F . Hence the
decoding Condition (7.21) must be modified by adding a log(2�/2) = �/2 term
to the right hand side, and then we will have a polynomial time list decoding
algorithm working under the modified condition. We therefore conclude that
one can list decode in polynomial time and output every m with |m| ≤ K/2
that satisfies

n∑
i=1

aizi log pi > log(� + 1) +
�

2
log K +

1
� + 1

n∑
i=1

(
zi + 1

2

)
log pi ,

as claimed in the theorem.5 For easy reference, the CRT list decoding algo-
rithm is described in Figure 7.6.2. �

List Decode(r, �, z1, z2, . . . , zn)

1. Let Izi
1 be the set of polynomials that are integer linear combinations of

{pa
i (x − ri)

(zi−a)}zi
a=0.

2. Compute a basis for the lattice L of all degree � polynomials belonging to⋂n
i=1 Izi

i .
3. Scale this lattice by multiplying the i’th coordinate by (K/2)i−1 to produce

the lattice L′.
4. Run LLL to find a short vector v′ in L′; let it correspond to a degree �

polynomial c(x) ∈ Z[x].
5. Find all integer roots m of c(x) (for example, by factoring c(x) over Z[x]

using [126]).
6. For each root m with |m| ≤ K/2, define the vector a = (a1, a2, . . . , an) by

ai = 1 if m ≡ ri(modpi), and ai = 0 otherwise. Output m if a satisfies
Condition (7.20).

Fig. 7.2. The list decoding algorithm for Chinese Remainder codes

Discussion of the assumed lattice algorithm: In the above proof we
assumed a subroutine to compute the basis for an intersection lattice given
the basis of the individual lattices. We now discuss how this may be done —
further details and a more formal treatment may be found in [41, 140].

Let L be any full-dimensional lattice of dimension d, with basis given
by the rows of the matrix M . We define the dual L∗ of the lattice L to be

5The astute reader might have noticed and be slightly bothered by the fact that
we have ignored the log(2/(2−γ)) term from Equation (7.21). This would cause an
o(1) difference to the result stated. Nevertheless, the result of Theorem 7.11 is itself
accurate in its stated form. This is because, instead of the LLL algorithm, one can
use Schnorr’s improvement to the LLL algorithm, which finds an 2ε� approximation
to the shortest lattice vector in polynomial time, for any desired constant ε > 0. In
this way, we can in fact weaken the requirement of Condition (7.20) by subtracting
(1/2 − ε)� from the right hand side.

7.6 Decoding Algorithms for CRT Codes 169

{u ∈ Rd : u · v ∈ Z for all v ∈ L}. Note that the rows of
(
M−1

)T give a
basis for L∗.

Note also that given bases for two lattices L1 and L2, a basis for (the
closure of) the union of the two lattices, denoted L1 ∪ L2, can be found
efficiently using algorithms for computing the Hermite Normal Form of a
generating set of vectors. Now, to compute a basis for the intersection of
two lattices L1 and L2, observe that L1 ∩ L2 = (L∗

1 ∪ L∗
2)

∗. Therefore, by
combining the facts above, one obtains an efficient algorithm for computing
a basis for the intersection of full-dimensional lattices given bases for the
individual lattices.

7.6.3 Applications to “Interesting” Weight Settings

The result of Theorem 7.11 gives a general list decoding algorithm that works
as long as a certain “weighted” condition is satisfied. We now get specific re-
sults for the CRT code for interesting choices of weights on the coordinate
positions, through an appropriate choice of parameters (like �, zi) in The-
orem 7.11. We begin by proving a version of Theorem 7.11 with arbitrary
(not necessarily integer) values of zi. The proof is somewhat technical but
the main idea is simple: approximate the zi’s by large integers z∗i , and pick
a large enough “list size” parameter �.

Theorem 7.12. For list decoding of CRT codes, for any tolerance parameter
ε > 0, and non-negative reals zi, when given as input a received word r, we
can in time polynomial in n, log N and 1/ε, find a list of all codewords such
that

n∑
i=1

aizi log pi ≥
√√√√log K

(n∑
i=1

z2
i log pi + εz2

max

)
, (7.22)

where the ai’s are defined as earlier.

Proof: We may assume that zmax = 1 (note that the condition of (7.22)
is invariant under scaling of the zi’s, so this can be ensured by dividing
out all weights by zmax). We will prove the claimed result by appealing to
Theorem 7.11 on a suitably chosen set of integer weights z∗i .

Let A be a large integer to be specified later in the proof. Set z∗i = �Azi�.
By Theorem 7.11, for any positive integer � we can successfully list decode
(in poly(n, log N, A, �) time) provided

n∑
i=1

aiz
∗
i log pi > log(� + 1) +

�

2
log K +

1
� + 1

n∑
i=1

(
z∗i + 1

2

)
log pi.

We would like to pick a good choice for �. Since Azi ≤ z∗i < Azi + 1, the
above condition is met whenever

170 7 A Unified Framework for List Decoding of Algebraic Codes

n∑
i=1

aizi log pi ≥ log(� + 1)
A

+
�

2A
log K + (7.23)

+
A

2(� + 1)

n∑
i=1

(
z2

i +
3
A

zi +
2

A2

)
log pi .

Define Zi = z2
i + 3

Azi + 2
A2 for 1 ≤ i ≤ n. Let us pick

� =
⌈
A

√∑n
i=1 Zi log pi

log K

⌉
− 1. (7.24)

It is not difficult to see that for this choice of �, Condition (7.23) is met
whenever

n∑
i=1

aizi log pi ≥ 1
A

log
(

A

√∑n
i=1 Zi log pi

log K
+ 1

)
+ (7.25)

+

√√√√log K
(n∑

i=1

Zi log pi

)
.

For A ≥ 10 log N
ε , the right side of Equation (7.25) above is at most

O(
log log N

log N
) +

√√√√log K
(n∑

i=1

z2
i log pi +

ε

2

)
≤
√√√√log K

(n∑
i=1

z2
i log pi + ε

)

for large N . Thus, Condition (7.25) is met provided

∑
i=1

aizi log pi ≥
√√√√log K

(n∑
i=1

z2
i log pi + ε

)
,

and the proof is complete by noting that A = O(log N
ε) and � =

O(ε−1 log3/2 N), and so the overall runtime is polynomial in n, logN and
ε−1. �

Corollary 7.13. For list decoding of CRT codes, for any tolerance parameter
ε > 0, and non-negative real weights βi, when given as input a received word
r, we can, in time polynomial in n, log N and 1/ε, find a list of all codewords
whose β-weighted agreement with r satisfies:

n∑
i=1

aiβi ≥
√√√√log K

(
n∑

i=1

β2
i

log pi
+ ε max

j

β2
j

log pj

)
.

7.7 GMD Decoding for CRT Codes 171

Proof: Follows by setting zi = βi/ log pi in the result of the above theorem.
�

Note that the above corollary implies that we can essentially “match” the
combinatorial bound of Condition (7.19). Let us now collect further results
for the “usual” uniform weighting of the codeword positions, namely βi = 1
for each i.

Theorem 7.14. For list decoding of CRT codes with parameters
(p1, p2, . . . , pn; K), for any ε > 0, we can in time polynomial in n,

∑
i log pi

and 1/ε, find a list of all codewords which agree with a received word in t
places provided t ≥√

k(n + ε).

Proof: Let us apply Theorem 7.12 with zi = 1/ log pk+1 for 1 ≤ i ≤ k,
zi = 1/ log pi for k < i ≤ n, and ε′ = ε log pk+1. This gives that we can
decode whenever the number of agreements t is at least

k − log K

log pk+1
+

√√√√ log K

log pk+1

(
log K

log pk+1
+

n∑
i=k+1

log pk+1

log pi
+ ε′

)
.

Define Δ
def= k − log K

log pk+1
; clearly Δ ≥ 0. Since log pk+1 ≤ log pi for i = k +

1, · · · , n, the above condition is met whenever t ≥ Δ+
√

(k −Δ)(n−Δ + ε).
Now, a simple application of the Cauchy-Schwartz inequality shows that Δ+√

(k −Δ)(n−Δ + ε) ≤√
k(n + ε), and thus our decoding algorithm works

whenever t ≥√
k(n + ε). �

Theorem 7.15. For list decoding of CRT codes with parameters
(p1, p2, . . . , pn; K), for any ε > 0, we can in time polynomial in n,

∑
i log pi

and 1/ε, find a list of all codewords which agree with a received word in t
places provided

t ≥
√√√√log K

(
n∑

i=1

1
log pi

+ ε

)
.

Proof: This follows from Corollary 7.13 with βi = 1 for 1 ≤ i ≤ n. �
Note that the result of Theorem 7.14 matches the combinatorial bound of
Condition (7.18). The bounds in Theorem 7.14 and Theorem 7.15 are incom-
parable in general.

7.7 GMD Decoding for CRT Codes

For integers k, n, relatively prime integers p1 < p2 < · · · < pn, K =
∏k

i=1 pi,
and any integer j, 1 ≤ j ≤ n, Goldreich, Ron, and Sudan [72] gave a near-
linear time algorithm to compute the unique integer m in the range −K/2 <
m ≤ K/2, if any, that satisfies

172 7 A Unified Framework for List Decoding of Algebraic Codes

j∑
i=1

ai log pi >
1
2

(
j∑

i=1

log pi +
k∑

i=1

log pi

)
(7.26)

where ai is defined in the usual way: ai = 1 if m = ri(mod pi) and ai = 0
otherwise. Note that the above algorithm decodes up to half the minimum
w-weighted distance (1

2 · log(N/K)) for the “natural” weighting wi = log pi

of the CRT code. Using this algorithm as the basic subroutine and running
a GMD style algorithm similar to Forney [60] (see also Appendix A), we are
able to perform such a decoding for any “user-specified” choice of weights
β = 〈β1, β2, . . . , βn〉. In other words, we give a soft decoding algorithm for
CRT codes for the case of unambiguous decoding (the result of Theorem 7.11
being for the case of soft decoding with lists of size �). While the list decoding
algorithm decodes under a more general condition than the soft decoding
algorithm to be discussed here, the advantage of this GMD based decoding
algorithm is its simplicity and faster runtime (we will get a near-quadratic
time algorithm).

To obtain the claimed decoding algorithm, we prove a more general result
that applies to any code, and then apply it to the CRT code. Suppose we
have an arbitrary code C of blocklength n. We show how to use a decoding
algorithm designed for any weighting α to produce one that works for the
desired weighting β. Define Aα =

∑n
i=1 αi − Dα where Dα is α-weighted

distance of the code, so that Aα is the maximum α-weighted agreement
between two distinct codewords of C. Aβ for the weight vector β is defined
similarly. We are now ready to state and prove the main result of this section:

Proposition 7.16. Let C be an arbitrary code of blocklength n. Let α, β ∈
Rn

+ be positive real vectors such that β1
α1
≥ β2

α2
≥ · · · ≥ βn

αn
, and let Aα, Aβ for

the code C defined as described above. Suppose we have a polynomial time
algorithm Algα that when given as input a received word r = 〈r1, . . . , rn〉 and
an index j (1 ≤ j ≤ n), can find the unique codeword c ∈ C, if any, whose
α-weighted agreement with r in the first j codeword positions is more than
1
2

(∑j
i=1 αi + Aα

)
. Then, for any vector of positive reals β = 〈β1, . . . , βn〉,

there is a polynomial time algorithm Algβ that when given as input a received
word r, outputs the unique codeword, if any, whose β-weighted agreement
with r is at least

1
2

(n∑
i=1

βi + Aβ + βmax

)
.

Moreover, the run-time of Algβ is at most O(n) times that of Algα.

Proof: Recall that the codeword positions i are ordered so that β1
α1

≥ β2
α2
≥

· · · ≥ βn

αn
. Define

Ãβ
def= max

x∈[0,1]n∑
αixi≤Aα

{
n∑

i=1

βixi

}
. (7.27)

7.7 GMD Decoding for CRT Codes 173

Note that under the condition x ∈ {0, 1}n, the above would just define Aβ ; we
relax the condition to x ∈ [0, 1]n in the above to define Ãβ . Clearly Ãβ ≥ Aβ .
It is also easy to verify that Ãβ < Aβ + βmax. We will present an algorithm
to find the unique codeword c = 〈c1, c2, . . . , cn〉 ∈ C, if any, that satisfies

n∑
i=1

aiβi >
1
2
(n∑

i=1

βi + Ãβ

)
(7.28)

(where ai = 1 if ci = ri and 0 otherwise), and this will imply the claimed
result (since Ãβ < Aβ + βmax). We now assume such a codeword c exists, as
otherwise there is nothing to prove.

The algorithm Algβ will simply run Algα for all values of j, 1 ≤ j ≤ n,
and pick the closest codeword among the (at most n) codewords which the
runs of Algα returns. If this algorithm fails to find the codeword c that satis-
fies Condition (7.28), then, by the hypothesis of the Theorem, the following
condition must hold for every j, 1 ≤ j ≤ n:

2
j∑

i=1

aiαi ≤
j∑

i=1

αi + Aα . (7.29)

Let x̃ = 〈1 1 · · · 1 ε 0 · · · 0〉 be a vector such that
∑n

i=1 αix̃i = Aα (here
0 ≤ ε < 1). Denote by � the last position where x̃i = 1 (so that x̃� = 1 and
x̃�+1 = ε). By our definition (7.27) Ãβ ≥ ∑

i βix̃i (in fact by the ordering
of the codeword positions it is also true that Ãβ =

∑
βix̃i, though we will

not need this). Now for j ≥ � + 1, Aα =
∑n

i=1 αix̃i =
∑j

i=1 αix̃i. Also, for
1 ≤ j ≤ �, we have the obvious inequality

∑j
i=1 aiαi ≤

∑j
i=1 αi =

∑j
i=1 αix̃i,

which implies

2
j∑

i=1

aiαi ≤
j∑

i=1

αi +
j∑

i=1

αix̃i .

Combining the above with Equation (7.29) we obtain that the following uni-
form condition that holds for all j, 1 ≤ j ≤ n:

2
j∑

i=1

aiαi ≤
j∑

i=1

αi +
j∑

i=1

αix̃i . (7.30)

Multiplying the jth inequality above by the non-negative quantity
(βj

αj
−

βj+1
αj+1

)
for 1 ≤ j ≤ n (define βn+1 = 0 and αn+1 = 1), and adding the resulting

inequalities, we get

2
n∑

i=1

aiβi ≤
n∑

i=1

βi +
n∑

i=1

βix̃i ≤
n∑

i=1

βi + Ãβ ,

which contradicts Condition (7.28). Thus the codeword c that satisfies (7.28),
if any, will indeed be output by the algorithm Algβ. �

174 7 A Unified Framework for List Decoding of Algebraic Codes

Theorem 7.17. For the CRT code with parameters (n, k; p1, p2, . . . , pn), for
any received word r = 〈r1, r2, . . . , rn〉, there is a polynomial time (in fact
near-quadratic time) algorithm to find the unique codeword m = (m1, m2,
. . . , mn), if any, that agrees with r in at least n+k

2 positions.

Proof: By the result of [72], we have a near-linear time decoding algorithm
for the weighting αi = log pi and Aα = log K (where K = p1p2 · · · pk). For
β equal to the all-ones vector, we have Aβ = k − 1. Therefore, by Proposi-
tion 7.16, we can find the unique codeword m that agrees with r in at least
(n + k)/2 places, as claimed. �

7.8 Bibliographic Notes

The redundancy property of the Chinese Remainder representation has been
exploited often in theoretical computer science. For example, the Karp-Rabin
pattern matching algorithm is based on this redundancy [118]. The CRT
representation of an integer allows one to reduce computation over large
integers to that over small integers. This is also useful in certain complexity-
theoretic settings, a notable example being its use in showing the hardness
of computing the permanent of 0/1 matrices [191].

The natural error-correcting code (the CRT code) that results from the
Chinese Remainder representation has also been studied often in the litera-
ture (see [174, 122] and the references there in). The CRT code was proposed
as an alternate method for implementing secret sharing [42, 17]. Mandel-
baum [133, 134] was the first to consider the basic algorithmic question of
decoding the CRT code up to half the minimum distance. He succeeded in
giving such a decoding algorithm; however, the runtime of his algorithm was
polynomial only when the pi’s are very close to one another, and could be
exponential in n otherwise. Goldreich, Ron and Sudan [72] present and an-
alyze a variant of Mandelbaum’s algorithm, which can be implemented in
near-linear time, and can unique decode the CRT code up to (n−k) log p1

log p1+log pn
er-

rors. This is a close approximation to half the distance when the primes are
reasonably close to one another.

Inspired by the success of list decoding algorithms for Reed-Solomon and
AG-codes, Goldreich et al [72] considered the list decoding problem for CRT
codes. They presented a polynomial time algorithm to list decode CRT codes
up to (about)

(
n −

√
2kn log pn

log p1

)
errors. For primes which are close to one

another and for small values of k/n, this decodes well beyond half the dis-
tance of the code. However, this is not the case when the primes vary widely
in size and/or the “rate” k/n is large. One of the motivations of the list de-
coding algorithm in [72] was an application to the average-case hardness of
the permanent on certain random matrices — a discussion of this connection
appears in the conference version [71] of the same paper. H̊astad and Näslund

7.8 Bibliographic Notes 175

[100] used the algorithm of [72] to construct new hardcore predicates based
on one-way functions.

Subsequent to this, Boneh [31] improved the list decoding algorithm of

[72]. His algorithm could correct up to about
(
n −

√
kn log pn

log p1

)
errors. One

weakness common to all the above results on CRT decoding is their poor(er)
performance if the primes vary significantly in size. This can cause the algo-
rithm of Mandelbaum [133] to take exponential time, while it degrades the
number of errors that the algorithms of Goldreich et al [72], or Boneh [31] can
correct. This weakness is due to an eccentricity of the CRT code: its alphabet
size is not uniform, and so the “contribution” of an error is not independent
of its location (knowing a residue modulo a larger pi correctly gives more
information than knowing a residue modulo a smaller pi). Hence one needs
to suitably “reweight” the coordinate positions in order to compensate for
this inherent disparity between the various positions. This is exactly what the
weighted decoding algorithm we discussed in this chapter allows us to do. It
thereby permits efficient decoding up to about (n − √

kn) errors, and thus
completely removes the dependence of the number of correctable errors on
the size of the pi’s. It was the development of this soft decoding algorithm for
CRT codes that caused us to examine in greater detail the algebra underly-
ing the various list decoding algorithms and unveil the unified ideal-theoretic
view of decoding presented in this chapter.

The CRT decoding algorithms discussed in this chapter appear in [86].
The general “ideal-theoretic” approach to list decoding algebraic codes was
sketched in [86] as an appendix, and it has been further developed and ex-
panded for presentation in this chapter.

8 List Decoding of Concatenated Codes

8.1 Introduction

The decoding algorithms for Reed-Solomon and AG-codes provide the first
results which algorithmically exploit the potential of list decoding well be-
yond half the minimum distance. In addition, these codes are widely studied
and used, and thus these algorithms are not only theoretically interesting,
but could also have a lot of practical impact. In this chapter, we are inter-
ested in polynomial time constructible linear codes over Fq for a small, fixed
q, which can be efficiently list decoded from a large, and essentially “maxi-
mum” possible, fraction of errors, and which have good rate. Codes over small
alphabets are desirable for several applications. Of particular interest to us
will be binary codes. Such small alphabet codes with high list decodability
cannot be directly obtained from Reed-Solomon or algebraic-geometric codes.
Recall that Reed-Solomon codes require the alphabet size to be at least as
large as the blocklength of the code. While AG-codes can be defined over
an alphabet of fixed size q, their performance is limited by certain algebraic
barriers. In particular these rule out the existence of good binary AG-codes,
and even for larger q limit their list decodability to much less than what is
in general possible for q-ary codes.

The reader will recall that in Chapter 5 we had investigated trade-offs
between list decodability and rate for q-ary codes. The results of this chapter
can be viewed as an attempt to constructivize, to whatever extent possible,
the existential bounds established in Chapter 5.

While Reed-Solomon and AG-codes do not yield good list decodable q-ary
codes for small q, we show in this chapter that concatenated codes that use
them as outer codes along with appropriate inner codes do achieve small al-
phabet size together with good algorithmic list decodability properties. The
concatenated codes are decoded in two steps: in the first step, a decoding
of the portions of the received word corresponding to the various inner en-
codings is performed. The inner code, owing to its small dimension, can be
decoded by brute-force in the allowed runtime (which is polynomial in the
entire blocklength). The inner decoding passes to the outer decoder, infor-
mation concerning the possible symbols at each position, together with ap-
propriate weights or confidence information. The decoding is then completed
by running the soft (list) decoding algorithms for the outer Reed-Solomon

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 177-207, 2004.
© Springer-Verlag Berlin Heidelberg 2004

178 8 List Decoding of Concatenated Codes

or AG-code from Chapter 6. This represents a novel use of the soft decoding
algorithm, and is one of the few such uses where a simple worst-case analytic
bound on the number of errors corrected by the algorithm can be proved.
(In contrast, a large body of literature on soft decoding applies it to proba-
bilistic channels and obtains either analytic or experimental estimates of the
decoding error probability under the specific error model (cf. [59, 60, 121]).)

8.2 Context and Motivation of Results

We are interested in families of q-ary codes that can be efficiently list decoded
from a large fraction of errors. Decoding from a fraction of errors beyond
(1 − 1/q) is information-theoretically impossible for q-ary codes (of positive
rate). This is because a random received word will differ from any particular
codeword in a expected fraction (1−1/q) of positions. Therefore, list decoding
beyond a fraction (1 − 1/q) of errors will require a list size proportional to
the total number of codewords, and hence an exponential list size for code
families with positive rate.

Therefore, we are interested in families of q-ary codes that can be list
decoded from a fraction p of errors, for 0 < p < (1 − 1/q). Having fixed
the desired level of error-resilience, the quantity we would like to optimize is
the rate of the code family. This is exactly in the spirit of the results from
Chapter 5, except that we are now interested in both explicit specifications
or polynomial time constructions of the code, and efficient list decoding
algorithms (and not just a good combinatorial list decodability property).

The main tools used for the above pursuit are concatenated codes with
outer Reed-Solomon or AG-codes and inner codes with good combinatorial
list decodability and/or distance properties. This gives a polynomial time
construction of, say, a binary code with good combinatorial list decodability.
We enhance the nice combinatorial properties of concatenated codes with
algorithmic ones, by presenting fairly general schemes to efficiently decode
these codes to close to their Johnson radius (which is the a priori “list
decoding capacity” of any code).

In order to present the above constructive results, we focus on the “high-
noise regime”, i.e., list decoding up to a fraction (1 − 1/q − ε) of errors for
q-ary codes (where q is thought of as small and fixed). For such codes, the
results of Chapter 5 imply that the best rate achievable is Θ(ε2). Our goal will
be to approach this performance with explicit codes and efficient decoding
algorithms. We loosely refer to codes that can correct such a large fraction
(approaching (1− 1/q)) of errors as highly list decodable.

We focus on the high-noise regime since it brings out the asymptotics
very well. Even optimizing the exponent of ε in the rate is a non-trivial
problem to begin with in this context. Hence, working in the high-noise regime
implies that (at least for current results) we need not be very careful with
the constant factors in the rate that are independent of ε (since the εO(1)

8.3 Overview of Results 179

term is the dominant one in the rate). Moreover, there is a natural and well-
posed goal of approaching the “optimal” rate, i.e., obtaining the best possible
exponent of ε in the rate. We note here that this is a very asymptotic and
computer science style perspective, and indeed the motivation comes partly
from applications of list decoding to complexity theory, to be discussed in
Chapter 12, where the high-noise regime is the most interesting and useful
one to focus on. Coding theorists are sometimes disturbed by the low rate
in the way we state some of our results. But we would like to stress that
the low rate is unavoidable since we are targeting decoding from a very large
fraction of errors. Moreover, we believe that optimizing our techniques for
the high-noise (and consequently low-rate) regime is a good first step, and
that the techniques can eventually be applied to a more careful, thorough
investigation of the situation where we do not wish to correct such a large
fraction of errors. The results of the next two chapters will also be motivated
by and stated for the high-noise regime – these chapters will deal with codes
over large (but constant-sized) alphabets and erasure codes, respectively.

8.3 Overview of Results

We present list decoding algorithms for several families of concatenated codes.
Recall that the distance of a concatenated code whose outer code has distance
D and inner code has distance d is at least Dd (and this quantity is referred
to as the designed distance of the concatenated code). Unique decoding al-
gorithms to decode up to the product bound, namely to correct fewer than
Dd/2 errors, are known based on Generalized Minimum Distance decoding
of the outer code [60, 110] (this is also discussed in detail in Appendix A).
The focus of this chapter is on list decoding algorithms that permit recovery
well beyond the product bound for certain families of concatenated codes. A
discussion of the specific results follows.

In Section 8.4, we give list decoding algorithms for codes where the outer
code is a Reed-Solomon or Algebraic-geometric code and the inner code is
a Hadamard code. Our algorithms decode these codes up to the Johnson
bound on list decoding radius. These algorithms also serve as a beautiful
illustration of the power of our soft decoding algorithms for list decoding
Reed-Solomon and AG-codes from Chapter 6. The construction with an ap-
propriate algebraic-geometric outer code, upon picking parameters suitably,
gives us a construction of q-ary codes of rate Ω(ε6) list decodable up to a
fraction (1− 1/q − ε) of errors.

In Section 8.5, we present a decoding algorithm for concatenated codes
with outer Reed-Solomon or AG-code and an arbitrary inner code. The al-
gorithm falls short of decoding up to the Johnson radius, but decodes well
beyond half the distance when the rate of the outer code is small. In particu-
lar, it gives an alternative construction of q-ary codes of rate Ω(ε6) decodable
up to a fraction (1 − 1/q − ε) of errors. The advantage of this construction

180 8 List Decoding of Concatenated Codes

is that one can use Reed-Solomon codes as opposed to the more complicated
AG-codes necessary for the earlier result using Hadamard codes. The con-
struction and decoding algorithms are consequently also easier and faster.

Finally, in Section 8.6, we use special purpose codes as inner codes in a
concatenated construction to obtain binary linear codes of rate Ω(ε4) effi-
ciently list decodable from a fraction (1/2 − ε) of errors. The inner codes
are a more general variant of the ones guaranteed by Theorem 5.8 of Chap-
ter 5. We should remark that we are able to obtain this result only for binary
codes.1

We stress here that our construction that has rate Ω(ε4) is not obtained
by constructing a large distance binary code and then appealing to the John-
son bound to argue that the list decoding radius is at least (1/2− ε). Indeed,
this will require the relative distance to be at least (1/2 − O(ε2)) and the
best known polynomial time constructions of such codes yield a rate of only
about Ω(ε6). In fact, a polynomial time construction of binary code families
of relative distance (1/2− O(ε2)) and rate Ω(ε4) will asymptotically match
the Gilbert-Varshamov bound at low rates, and will be a major breakthrough
in coding theory.

The results of this chapter focus exclusively on linear codes. Some results
in the next two chapters will resort to a certain “limited” amount of non-
linearity.

8.4 Decoding Concatenated Codes with Inner
Hadamard Code

We present list decoding algorithms for concatenated codes with an outer
algebraic code and inner Hadamard code. The motivation of considering the
Hadamard code is its nice properties which we exploit to decode the concate-
nated codes up to their Johnson radius. Concatenated codes with algebraic-
geometric outer code and inner Hadamard code are among the best explicitly
known codes in terms of the rate vs. distance trade-offs. By decoding such
codes up to the Johnson radius, we will get codes of good rate and very high
list decodability. This is our primary motivation for considering decoding
algorithms for such concatenated codes.

Recall the definition of Hadamard codes from Chapter 2. The q-ary
Hadamard code of dimension m encodes an x ∈ Fm

q by 〈x · z〉z∈Fm
q

(i.e.

1We know how to achieve a similar performance for general alphabets if we
relax the requirement of linearity. The next chapter will discuss several non-linear
code constructions with good list decodability. The codes, though not linear, will
be based on “pseudolinear” codes, and will possess succinct representation and be
efficiently encodable/decodable. Using random q-ary pseudolinear codes as inner
codes will permit us to obtain codes of rate Ω(ε4) list decodable up to a fraction
(1 − 1/q − ε) of errors, for every prime power q. We, however, do not elaborate on
this point further.

8.4 Decoding Concatenated Codes with Inner Hadamard Code 181

by its dot product over Fq with every vector z ∈ Fm
q). It has blocklength qm

and minimum distance (1 − 1/q) · qm; in fact all non-zero codewords in the
code have Hamming weight (1 − 1/q) · qm.

1

RS

Hadamard
Encodingn <= q

EncodingGF(q))m

m

over

p(x) p(x) p(x)1 2

Had[p(x)]nHad[p(x)]

n
Message

(polynomial p

Fig. 8.1. Reed-Solomon concatenated with a Hadamard code

The codes considered in this section will be the concatenation of a Reed-
Solomon or AG-code over GF(qm) with the q-ary Hadamard code of dimen-
sion m. Note the number of outer codeword symbols (i.e., qm) exactly equals
the number of Hadamard codewords, so concatenation of these codes is well-
defined. Figure 8.1 depicts the structure of a Reed-Solomon concatenated
with a Hadamard code. The encoding of a message (a polynomial) p will be
Had(p(x1))Had(p(x2)) · · ·Had(p(xn)), where x1, . . . , xn are distinct elements
in GF(qm) that are used in defining the Reed-Solomon code. (To encode an
element α ∈ GF(qm) using the Hadamard code, one views α as a string
of length m over GF(q) using some fixed representation of GF(qm) as vec-
tors of length m over GF(q).) The reader might recall that we already used
Reed-Solomon codes concatenated with Hadamard codes in Section 4.6 (with
q = 2).

Jumping ahead to how our decoding will proceed, the inner decoder will
“decode” the Hadamard code and pass information concerning the possible
symbols at each position, together with appropriate weights. Suppose the
i’th block (corresponding to the inner encoding of the i’th outer codeword
symbol) of the received word is ri. It is natural that the weight that the inner
decoder gives to a symbol α ∈ GF(qm) for position i should be a decreasing
function of Δ(Had(α), ri) (where Δ(x, y) measures the Hamming distance
between x and y). This is because, intuitively, the larger this distance, the
smaller is the likelihood that the i’th symbol of the outer codeword was α.
In fact, the inner decoder will set weights to be a decreasing linear function
of this distance (the linearity makes possible a precise analysis of the number
of errors corrected). Specifically, the weight for symbol α for the i’th block
ri of received word will be set to

182 8 List Decoding of Concatenated Codes

r1 r 2 r nr i

z1 zqzj
wi,1 wi,j w i,q (for every position i)

in outer alphabet F
Weights for all q elements

List of Messages

 { (i , z ,w) }Soft Decoder for outer code on: j i,j

Inner Decoding

word broken
Received

positions

into n blocks

outer codeword
corres. to n

Fig. 8.2. The basic idea behind our decoding algorithms for concatenated codes.
For each position of the outer code, the inner decoding passes a weight or confidence
rating for every element of the field F = GF(q). These are then used by a soft list
decoding algorithm for the outer code to finish the decoding.

(
1− q

q − 1
Δ(ri, Had(α))

qm

)
.

The decoding is then completed by running the soft (list) decoding algo-
rithms for the outer Reed-Solomon or AG-code from Chapter 6 with these
choice of weights. This is in fact the procedure used for decoding all of the
concatenated codes in this chapter. Figure 8.2 illustrates the basic structure
of our decoding schemes for concatenated codes.

Recalling the statements of Theorems 6.26 and 6.41, the sum of the
squares of the weights is an important quantity that governs the performance
of the decoding algorithm. Good upper bounds on this sum will permit a good
analysis of the error-correction performance of the algorithm. Below, we pro-
vide such an upper bound for the choice of weights made by the inner decoder
in decoding the Hadamard code.

Proposition 8.1. Let q be a prime power and let m be a positive integer.
Let Had : Fqm → Fqm

q be the q-ary Hadamard code of dimension m and
blocklength qm. Let f ∈ Fqm

q be an arbitrary vector of length qm over Fq.
Then ∑

α∈GF(qm)

(
1− q

q − 1
· Δ(f, Had(α))

qm

)2

≤ 1 . (8.1)

Remark: For the case q = 2,
(
1 − 2Δ(f, Had(α))/2m

)
equals the Fourier

coefficient f̂α of f with respect to Had(α), viewed as a linear function mapping
Fm

q to Fq. In this case, the statement of the Proposition in fact holds with

8.4 Decoding Concatenated Codes with Inner Hadamard Code 183

equality, and is simply the standard Plancherel’s identity
∑

α f̂2
α = 1. The

result for the non-binary case appears in [120], and the proof there is based on
the MacWilliams-Sloane identities for the weight distribution of dual codes;
we give a more elementary proof below.

Proof: The proof works by embedding any string f ∈ Fqm

q as a qm+1-
dimensional real unit vector. The embedding will be such that for every
α
= β ∈ GF(qm), the vectors associated with the Hadamard codewords
Had(α) and Had(β) will be orthogonal (in the usual real dot product over
Rqm·q). Furthermore, the embedding will be such that the quantity

(
1− q

q − 1
· Δ(f, g)

qm

)

for every two functions f, g ∈ Fqm

q will simply be the dot product of the
vectors associated with f, g. The result will then follow since the sum of the
squares of the projections of a unit vector along pairwise orthogonal vectors
can be at most 1.

Suppose the q elements of Fq are γ1, γ2, . . . , γq. Associate a q-dimensional
vector ei with γi as follows (eil denotes the l’th component of ei): eii =√

(q − 1)/q and eil = −1/
√

q(q − 1) for l
= i. Note that this definition
satisfies 〈ei, ei〉 = 1 and 〈ei, ej〉 = −1/(q− 1) for i
= j. For a string f ∈ Fqm

q ,
we view f as the qm+1-dimensional vector obtained in the obvious way by
juxtaposing the q-dimensional vectors for each of the qm values which f takes
on its domain, and then normalizing it to a unit vector (by dividing every
component by

√
qm). By abuse of notation, we will denote the real vector

associated with f also by f .
Note that when we take the inner product 〈f, g〉, we get a contribution of

1/qm corresponding to the positions where f, g agree, and a contribution of
−1

(q−1) · q−m corresponding to places where f, g differ. Hence we have

〈f, g〉 = (qm −Δ(f, g)) · q−m + Δ(f, g) ·
(−1

q − 1

)
· q−m

= 1− q

q − 1
· Δ(f, g)

qm
.

Now, for α
= β ∈ GF(qm), Δ(Had(α), Had(β)) = (1 − 1/q) · qm (recall that
two distinct codewords in the Hadamard code corresponding to Fm

q agree on
exactly qm−1 places and differ at qm−1(q−1) places). Thus, for α
= β, we have
〈Had(α), Had(β)〉 = 0. Also by our choice of vectors, 〈Had(α), Had(α)〉 = 1.
Hence the qm vectors associated with the Hadamard codewords are pairwise
orthogonal unit vectors. Using this fact the result follows since

∑
α∈Fm

q

(
1− q

q − 1
Δ(f, Had(α))

qm

)2

=
∑

α

〈f, Had(α)〉2 ≤ 〈f, f〉 = 1 . �

184 8 List Decoding of Concatenated Codes

8.4.1 Reed-Solomon Concatenated with Hadamard Code

We now use the above result to analyze the error-correction capability of
Reed-Solomon codes concatenated with Hadamard code, when using the soft
decoding algorithm for Reed-Solomon together with the weights passed by
the Hadamard decoding.

Theorem 8.2. Let C be q-ary code of blocklength n and relative distance δ,
that is obtained by concatenation of a Reed-Solomon code over GF(qm) with
the Hadamard code of dimension m, for some m. Then, there is a polynomial
time list decoding algorithm for C that decodes up to E errors where

E = n
(
1− 1

q

)(
1−

√
1− qδ

q − 1

)
−O(1) .

(In other words, one can decode such a code up to, essentially, the q-ary
Johnson bound on list decoding radius.)

Proof: The relative distance of a q-ary Hadamard code is (1 − 1/q), and in
fact all non-zero codewords have the same Hamming weight. Hence, it follows
that in order for the relative distance of the concatenated code C to be δ,
the relative distance of the outer Reed-Solomon code, call it CRS, must be
qδ/(q − 1). Let the blocklength of CRS be n0 ≤ qm, and its dimension be
(k0 + 1), where

k0 = n0

(
1− qδ

q − 1

)
. (8.2)

Let x1, x2, . . . , xn0 be distinct elements of GF(qm) that are used to de-
fine CRS. Thus, the messages of CRS (and hence C, too) are degree k0

polynomials over GF(qm), and a polynomial p is encoded under CRS as
〈p(x1), p(x2), . . . , p(xn0)〉. The blocklength n of the overall concatenated code
C satisfies n = n0q

m, and its dimension equals (k0 + 1)m.
Let y ∈ Fn

q be a “received word”; the task of list decoding that we wish
to solve is to obtain a list of all codewords of C within a Hamming distance
of E from y. For 1 ≤ i ≤ n0, denote by yi the portion of y in block i of the
codeword (i.e., the portion corresponding to the Hadamard encoding of the
ith symbol of the outer code).

We now perform the “decoding” of each of the n0 blocks yi as follows. For
1 ≤ i ≤ n0 and α ∈ GF(qm), compute the Hamming distance ei,α between
yi and Had(α), and then compute the weight wi,α as:

wi,α
def= max

{(
1− q

q − 1
· ei,α

qm

)
, 0

}
. (8.3)

Note the computation of all these weights can be done by a straightforward
brute-force computation in O(n0(qm)2) = O(n2/n0) time. Thus all the inner
decodings can be performed efficiently in at most quadratic time.

8.4 Decoding Concatenated Codes with Inner Hadamard Code 185

The key combinatorial property of these weights, that follows from Propo-
sition 8.1 above, is that ∑

α

w2
i,α ≤ 1 , (8.4)

for every i, 1 ≤ i ≤ n0. These weights will now be “passed” to the outer Reed-
Solomon decoder as the confidence information about the various symbols of
the Reed-Solomon codeword. For the outer decoder, we will use the soft
decoding algorithm from Chapter 6. Specifically, we will use the result of
Theorem 6.26. Applied to this context, the result implies that, for any desired
tolerance parameter ε > 0, we can find in time polynomial in n0 and 1/ε, a
list of all polynomials p over GF(qm) of degree at most k0 that satisfy

n0∑
i=1

wi,p(xi) ≥
(
k0 ·

∑
1≤i≤n0

α∈GF(qm)

w2
i,α

)1/2

+ ε max
i,α

wi,α . (8.5)

Applied to the choice of weights (8.3) and using Equation (8.4), the decoding
algorithm can thus retrieve all codewords corresponding to degree k0 poly-
nomials p for which

n0∑
i=1

(
1− q

q − 1
· ei,p(xi)

qm

)
≥
√

k0n0 + ε . (8.6)

Note that wi,p(xi) ≥ (1 − q
q−1 ·

ei,p(xi)

qm), and hence if the above condition is
satisfied then so is Condition (8.5).

Now, recall that ei,p(xi) = Δ(yi, Had(p(xi))). Hence, (8.6) above implies
that we can find all codewords at a distance E from the received word y
provided

n0 − qE

(q − 1) · qm
≥
√

k0n0 + ε or

qE

q − 1
≤ n

(
1−

√
k0

n0
− ε√

n

)
(since n = n0q

m)

⇐= E ≤ n
(q − 1

q

)(
1−

√
1− qδ

q − 1

)
− εqm ,

where in the last step we use the value of k0 from Equation (8.2). If we pick
ε ≤ 1/n, this implies we can list decode up to

E = n
(q − 1

q

)(
1−

√
1− qδ

q − 1

)
−O(1)

errors, as desired. �

186 8 List Decoding of Concatenated Codes

8.4.2 AG-code Concatenated with Hadamard Code

The result of Theorem 8.2 decodes the concatenated code up to the Johnson
radius, and thus has very good error-correction performance for the concerned
code. However, while interesting for a variety of reasons, from a coding stand-
point, the Reed-Solomon concatenated with Hadamard codes are not very at-
tractive. This is because they have very low rate, since the inner Hadamard
code maps m symbols into qm symbols, and thus has very poor, vanishing,
rate for large m. In particular, the family of codes is not asymptotically good,
and has rate rapidly tending to 0 in the limit of large blocklengths. It is thus
way off our pursuit of codes list decodable to a fraction (1−1/q−ε) of errors
with rate somewhat close to Θ(ε2).

In this section, we will adapt the result of Theorem 8.2 to concatenated
codes with outer AG-code (instead of Reed-Solomon code). The inner code
will be the Hadamard code as before. The rate of the overall code will once
again not be great, since it will inherit the poor rate of the Hadamard code.
But since AG-codes with good parameters exist over a fixed alphabet of
size independent of the blocklength, the inner Hadamard code will now be a
constant-sized code, and thus will have some fixed, albeit small, rate. Thus,
we will be able to achieve positive rate (i.e. rate which is at least r for some
fixed constant r > 0 that is independent of the blocklength) for the overall
code. As a corollary, in the next section, we will plug in the best-known
AG-codes (those discussed in Section 6.3.9) to obtain constructions of codes
which are list decodable up to a fraction (1− 1/q− ε) of errors and have rate
Ω(ε6).

The formal result concerning list decoding AG-codes concatenated with
Hadamard codes is stated below. The hypothesis about a suitable represen-
tation of the code is necessary in the statement of the theorem, since the
decoding algorithms of Chapter 6 also made this assumption.

Theorem 8.3. Let CAG−Had be q-ary code of blocklength n and relative dis-
tance at least δ, that is obtained by concatenation of an algebraic-geometric
code over GF(qm) of relative designed distance qδ/(q − 1) with the q-ary
Hadamard code of dimension m, for some m. Then, there exists a represen-
tation of the code of size polynomial in n under which a polynomial time list
decoding algorithm exists to list decode CAG−Had up to E errors, where

E = n
(
1− 1

q

)(
1−

√
1− qδ

q − 1

)
−O(1) .

(In other words, one can decode such a code up to, essentially, the q-ary
Johnson bound on list decoding radius.)

Proof: The proof parallels that of the earlier result (Theorem 8.2) where
the outer code was a Reed-Solomon code. The inner decodings of the various
Hadamard codes proceeds exactly as before, passing weights to the outer

8.5 Decoding a General Concatenated Code 187

decoder. Now, for the outer decoder we can make use of the soft list decoding
algorithm for AG-codes developed in Theorem 6.41, instead of the Reed-
Solomon soft decoder. This is really the only change necessary to the proof of
Theorem 8.2, and the claimed bound on the number of errors corrected follows
as before. We omit the details. The soft decoding algorithm for AG-codes
from Theorem 6.41 works in polynomial time only assuming a specific (non-
standard) representation of the AG-code, which necessitates the hypothesis
about the representation of the code in the statement of the theorem. �

8.4.3 Consequence for Highly List Decodable Codes

We now apply Theorem 6.41 with AG-codes that achieve the best known
trade-off between rate and distance (from Section 6.3.9 of Chapter 6). This
gives us codes list decodable up to a fraction (1−1/q−ε) of errors and which
have reasonably good rate.

Corollary 8.4. For every fixed prime power q, the following holds: For ev-
ery ε > 0, there exists a family of linear codes over Fq with the following
properties:

(i) The family is polynomial time constructible in that the generator matrix
of a code of blocklength n in the family can be computed in time a fixed
polynomial in n.

(ii) Its rate is Ω(ε6 · log(1/ε)).
(iii) For each code in the family, there exists a polynomial amount of ad-

vice information given which there is a polynomial time list decoding
algorithm that decodes the code up to a fraction (1− 1/q − ε) of errors.

Proof: We will employ the concatenated code construction of Theorem 8.3
applied with the outer code being AG-codes that meet the Drinfeld-Vlădut
bound (as guaranteed by Fact 6.43). By picking m even, we know there
exist AG-codes over GF(qm) of relative designed distance δ′ and rate R ≥
1 − 1/(qm/2 − 1) − δ′. The fraction of errors corrected by the algorithm of
Theorem 8.3 is (1 − 1/q)(1−√

1− δ′). Picking δ′ = 1 −O(ε2), we can get a
list decoding radius of (1− 1/q− ε). For such a value of δ′, the rate R of the
AG-code can be Ω(ε2), provided qm/2 = Ω(ε−2). This can be achieved with
m = Θ(log(1/ε)) (since q is fixed, we absorb constant terms that depend
on q into the Θ-notation). The rate of the concatenated code is the rate
of the AG-code multiplied by the rate of the Hadamard code, and is thus
R · (m/qm). Since R = Ω(ε2), m = Θ(log(1/ε)) and qm = O(ε−4), the rate
is Ω(ε6 log(1/ε)). �

8.5 Decoding a General Concatenated Code with Outer
Reed-Solomon or AG-code

The concatenated codes in the previous section used the Hadamard code as
inner code. This permitted an elegant analysis of the decoding algorithms

188 8 List Decoding of Concatenated Codes

based on the combinatorial identity of Proposition 8.1 and the soft decoding
algorithms from Chapter 6. However, the Hadamard code has very poor rate
which makes these codes not so attractive from a coding theory viewpoint.

In this section, we present an algorithm to decode concatenated codes with
outer Reed-Solomon or AG-codes when the inner code is an arbitrary q-ary
code. The idea behind the decoding will remain the same (recall Figure 8.2)
— in the first step, the inner decoding will pass weights which are linear
functions of the distance between the received word and the concerned inner
codeword. These weights will then be used in a soft decoding of the outer
code. The key technical step in making this work when the inner code is not
Hadamard but arbitrary is to prove an analog of the combinatorial bound of
Proposition 8.1 for a general q-ary code. We do so next.

8.5.1 A Relevant Combinatorial Result

To motivate the exact statement of the combinatorial result, we jump ahead
to give a hint of how the decoding will exactly proceed. When presented
a received word r, the inner decoder will simply search for and output all
codewords which lie in a Hamming ball of a certain radius R around r. The
weight associated with a codeword c at a distance ec = Δ(r, c) ≤ R from r
will be set to be (R − ec). These weights will be used in a soft decoding of
the outer code as before. We now state and prove a combinatorial result that
gives an upper bound on the sum of squares of the weights (R − ec). Some
readers may prefer to take the result below on faith and jump right ahead to
the decoding algorithm and its analysis in Section 8.5.2.

Proposition 8.5. Let C ⊆ [q]n be a q-ary code (not necessarily linear), and
let d be the minimum distance of C, and δ = d/n its relative distance. Let
r ∈ [q]n be arbitrary, and let

R = n
(
1− 1

q

)(
1−

√
1− δ

(1− 1/q)

)
(8.7)

be the q-ary Johnson radius of the code. Then we have

∑
c∈C

(
max{(R−Δ(r, c)), 0 }

)2

≤ δn2 (8.8)

Proof: The proof follows essentially the same approach as in the proof of the
Johnson bound (Theorems 3.1 and 3.2) from Chapter 3. Instead of bounding
the number of codewords within a distance R from r, we now require an
upper bound on the sum of squares of linear functions of the distance over
all such codewords. The proof will be identical to that of Theorem 3.1 for the
most part, with a change towards the end. For purposes of readability, we
give the full proof here. The reader familiar with the proof of Theorem 3.1

8.5 Decoding a General Concatenated Code 189

can jump to just past Equation (8.14) since the proof is identical till that
stage.2

We identify elements of [q] with vectors in Rq by replacing the symbol i
(1 ≤ i ≤ q) by the unit vector of length q with a 1 in position i. We then
associate elements in [q]n with vectors in Rnq by writing down the vectors for
each of the n symbols in sequence. This allows us to embed the codewords
of C as well as the received word r into Rnq. Let c1, c2, . . . , cM be all the
codewords that satisfy Δ(r, ci) ≤ R, where R is a parameter that will be set
shortly (it will end up being set to the Johnson radius as in Equation (8.7)).
By abuse of notation, let us denote by ci also the nq-dimensional real vector
associated with the codeword ci, for 1 ≤ i ≤ M (using the above mentioned
identification), and by r the vector corresponding to r ∈ [q]n. Let 1 ∈ Rnq be
the all 1’s vector. Now define v = αr + (1−α)

q 1 for a parameter 0 ≤ α ≤ 1 to
be specified later in the proof.

The idea behind the rest of the proof is the following. We will pick α so
that the nq-dimensional vectors di = (ci−v), for 1 ≤ i ≤ M , have all pairwise
dot products less than 0. Geometrically speaking, we shift the origin O to
O′ where OO′ = v, and require that relative to the new origin the vectors
corresponding to the codewords have pairwise angles which are greater than
90 degrees. We will then exploit the geometric fact that for such vectors di,
for any vector w, the sum of the squares of its projections along the di’s
is at most 〈w,w〉 (this is proved in Lemma 8.6). This will then give us the
required bound (8.8).

For 1 ≤ i ≤ M , let ei = Δ(r, ci) be the Hamming distance between ci

and r. Note by the way we associate vectors with elements of [q]n, we have
〈ci, r〉 = n− ei. Now

〈ci,v〉 = α〈ci, r〉+
(1 − α)

q
〈ci,1〉 = α(n− ei) + (1− α)

n

q
(8.9)

〈v,v〉 = α2n + 2(1− α)α
n

q
+ (1− α)2

n

q
=

n

q
+ α2

(
1− 1

q

)
n (8.10)

〈ci, cj〉 = n−Δ(ci, cj) ≤ n− d . (8.11)

Using (8.9), (8.10) and (8.11), we get for i
= j

〈di,dj〉 = 〈ci − v, cj − v〉 ≤ αei + αej − d +
(
1− 1

q

)
(1− α)2n

≤ 2αR− d +
(
1− 1

q

)
(1− α)2n (8.12)

Hence we have 〈di,dj〉 ≤ 0 as long as

R ≤ (1− 1/q)n−
(
(1− 1/q)

αn

2
+

(1− 1/q)n− d

2α

)
.

2We prove this result here and not in Chapter 3 due to the local nature of its
context and use.

190 8 List Decoding of Concatenated Codes

Picking α =
√

1− d/n
(1−1/q) =

√
1− δ

(1−1/q) maximizes the “radius” R for
which our bound will apply. Hence we pick

α =
(
1− δ

(1− 1/q)

)1/2

. (8.13)

and

R = n
(
1− 1

q

)(
1−

√
1− δ

(1− 1/q)

)
= n

(
1− 1

q

)
(1− α) . (8.14)

For this choice of α, R, we have 〈di,dj〉 ≤ 0 for every 1 ≤ i < j ≤ M . Now a
simple geometric fact, proved in Lemma 8.6 at the end of this proof, implies
that for any vector x ∈ Rnq that satisfies 〈x,di〉 ≥ 0 for i = 1, 2, . . . , M , we
have

M∑
i=1

〈x,di〉2
〈di,di〉 ≤ 〈x,x〉 . (8.15)

We will apply this to the choice x = r. Straightforward computations show
that

〈r, r〉 = n (8.16)

〈di,di〉 = 〈ci − v, ci − v〉 = 2αei + (1− α)2(1− 1
q
)n (8.17)

〈r,di〉 = (1 − α)
(
1− 1

q

)
n− ei = R− ei . (8.18)

Since each ei ≤ R, we have 〈r,di〉 ≥ 0 for each i, 1 ≤ i ≤ M , and therefore
we can apply Equation (8.15) above. For 1 ≤ i ≤ M , define

Wi =
〈r,di〉√〈di,di〉

=
R − ei√

2αei + (1− α)R
(8.19)

(the second step follows using (8.14), (8.17) and (8.18)). Since each ei ≤ R,
we have

Wi =
R− ei√

2αei + (1 − α)R
≥ R− ei√

(1 + α)R
=

R− ei√
δn

, (8.20)

where the last equality follows by substituting the values of α and R from
(8.13) and (8.14). Now combining (8.16), (8.17) and (8.18), and applying
Equation (8.15) to the choice x = r, we get

M∑
i=1

W 2
i ≤ n . (8.21)

Now from (8.20) and (8.21) it follows that
M∑
i=1

(R −Δ(r, ci))2 ≤ δn2 . (8.22)

8.5 Decoding a General Concatenated Code 191

This clearly implies the bound (8.8) claimed in the statement of the proposi-
tion, since the codewords ci, 1 ≤ i ≤ M , include all codewords c that satisfy
Δ(r, c) ≤ R, and the remaining codewords contribute zeroes to the left hand
side of Equation (8.8). �
We now prove the geometric fact that was used in the above proof. Once
again the reader should feel to skip its proof and move on to the decoding
algorithm in the next section, since there is no harm taking its statement on
faith.

Lemma 8.6. Let v1,v2, . . . ,vM be distinct unit vectors in RN such that
〈vi,vj〉 ≤ 0 for 1 ≤ i < j ≤ M . Further, suppose x ∈ RN is a vector such
that 〈x,vi〉 ≥ 0 for each i, 1 ≤ i ≤ M . Then

m∑
i=1

〈x,vi〉2 ≤ 〈x,x〉 (8.23)

Proof: Note that if 〈vi,vj〉 = 0 for every i
= j, then the vi’s form a linearly
independent set of pairwise orthogonal unit vectors. They may thus be ex-
tended to an orthonormal basis. The bound (8.23) then holds since the sum
of squares of projection of a vector on vectors in an orthonormal basis equals
the square of its norm, and hence the sum of squares when restricted to the
vi’s cannot be larger than 〈x,x〉. We need to show this holds even if the vi’s
are more than 90 degrees apart.

Firstly, we can assume 〈x,vi〉 > 0 for i = 1, 2, . . . , M . This is because
if 〈x,vi〉 = 0, then it does not contribute to the left hand side of Equation
(8.23) and may therefore be discarded. In particular, this implies that we
may assume (vi
= −vj) for any 1 ≤ i, j ≤ M . Since the vi’s are distinct unit
vectors, this means that |〈vi,vj〉| < 1 for all i
= j.

We will prove the claimed bound (8.23) by induction on M . When M = 1
the result is obvious. For M > 1, we will project the vectors v1, . . . ,vM−1,
and also x, onto the space orthogonal to vM. We will then apply the induction
hypothesis to the projected vectors and conclude our final bound using the
analog of (8.23) for the set of projected vectors. The formal details follow.

For 1 ≤ i ≤ M − 1, define v′
i = vi − 〈vi,vM〉vM. Since vi is different

from vM and −vM, each v′
i is a non-zero vector. Let ui be the unit vector

associated with v′
i. Let us also define x′ = x−〈x,vM〉vM. We wish to apply

the induction hypothesis to the vectors u1, . . . ,uM−1 and x′.
Now, for 1 ≤ i < j ≤ M − 1, we have 〈v′

i,v
′
j〉 = 〈vi,vj〉 −

〈vi,vM〉〈vj,vM〉 ≤ 〈vi,vj〉 ≤ 0, since all pairwise dot products between
the vi’s are non-positive. Hence the pairwise dot products 〈ui,uj〉, 1 ≤ i <
j ≤ M −1, are all non-positive. To apply the induction hypothesis we should
also verify that 〈x′,ui〉 > 0 for i = 1, 2, . . . , (M − 1). It will be enough to
verify that 〈x′,v′

i〉 > 0 for each i. But this is easy to check since

192 8 List Decoding of Concatenated Codes

〈x′,v′
i〉 = 〈x,vi〉 − 〈x,vM〉 · 〈vi,vM〉
≥ 〈x,vi〉 (8.24)
> 0

where (8.24) follows since 〈x,vM〉 > 0 and 〈vi,vM〉 ≤ 0.
We can therefore apply the induction hypothesis to the (M − 1) unit

vectors u1,u2, . . . ,uM−1 and the vector x′. This gives

M−1∑
i=1

〈x′,ui〉2 ≤ 〈x′,x′〉 . (8.25)

Now, ‖v′
i‖2 = 〈v′

i,v
′
i〉 = 〈vi,vi〉 − 〈vi,vM〉2 ≤ ‖vi‖2 = 1 = ‖ui‖2. This

implies that 〈x′,v′
i〉 ≤ 〈x′,ui〉, for 1 ≤ i ≤ M − 1. Also, by (8.24) 〈x′,v′

i〉 ≥
〈x,vi〉, and therefore

〈x,vi〉 ≤ 〈x′,ui〉 , (8.26)

for i = 1, 2, . . . , (M − 1). Also, we have

〈x′,x′〉 = 〈x,x〉 − 〈x,vM〉2 . (8.27)

The claimed result now follows by using (8.26) and (8.27) together with the
inequality (8.25). �

8.5.2 The Formal Decoding Algorithm and Its Analysis

We are now ready to state and prove our result about decoding concatenated
codes with a general inner code.

Theorem 8.7. Consider a family of linear q-ary concatenated codes where
the outer codes belong to a family of Reed-Solomon codes of relative distance
Δ over a field of size at most polynomial in the blocklength, and the inner
codes belong to any family of q-ary linear codes of relative distance δ. There is
a polynomial time decoding procedure to list decode codes from such a family
up to a fractional radius of

(
1− 1

q

)(
1−

√
1− qδ

q − 1

)
−
√

δ(1−Δ) . (8.28)

Proof: (Sketch) Consider a concatenated code C with outer code a Reed-
Solomon code over GF(qm) of blocklength n0, relative distance Δ and di-
mension (1−Δ)n0 + 1. We assume qm ≤ n

O(1)
0 , so that the field over which

the Reed-Solomon code is defined is of size polynomial in the blocklength.
Let the inner code Cin be any q-ary linear code of dimension m, blocklength
n1 and relative distance δ. Messages of C correspond to polynomials of de-
gree at most k0 = (1 − Δ)n0 over GF(qm), and a polynomial p is encoded

8.5 Decoding a General Concatenated Code 193

as 〈Cin(p(x1)), . . . , Cin(p(xn0)〉 where x1, x2, . . . , xn0 are distinct elements of
GF(qm) that are used to define the Reed-Solomon encoding.

The proof parallels that of the earlier result (Theorem 8.2) where the
inner code was the Hadamard code. Let y ∈ Fn

q be a received word. For
1 ≤ i ≤ n0, denote by yi the portion of y in block i of the codeword (namely,
the portion corresponding to the encoding by Cin of the ith symbol of the
outer Reed-Solomon code).

We now perform the “decoding” of each of the n0 blocks yi as follows.
Let

R = n1(1− 1/q)
(
1−

√
1− qδ

q − 1

)
(8.29)

be the Johnson radius of the inner code Cin. For 1 ≤ i ≤ n0 and α ∈ GF(qm),
compute the Hamming distance ei,α between yi and the codeword Cin(α), and
then compute the weight wi,α as:

wi,α
def= max{(R− ei,α), 0} . (8.30)

Note the computation of all these weights can be done by a straightforward
brute-force computation in O(n0n1q

m) = O(n1n
O(1)
0) = poly(n) time. Thus

all the inner decodings can be performed efficiently in polynomial time.
By Proposition 8.5 applied to the yi’s, for 1 ≤ i ≤ n0, we know that the

above weights have the crucial combinatorial property∑
α

w2
i,α ≤ δn2

1 , (8.31)

for i = 1, 2, . . . , n0. We will then run the soft decoding algorithm for Reed-
Solomon codes from Theorem 6.26 for this choice of weights. Now, arguing
exactly as in the proof of Theorem 8.2 that and using (8.31) above, we con-
clude that we can find in time polynomial in n and 1/ε, a list of all polynomials
p over GF(qm) of degree at most k0 for which the condition

n0∑
i=1

(R− ei,p(xi)) ≥
√

k0n0δn2
1 + εn1 (8.32)

holds. Recalling the definition of R (Equation (8.29)) and using k0 = (1 −
Δ)n0, we conclude that we can find a list of all codewords that are at a
Hamming distance of at most

n
(
1− 1

q

)(
1−

√
1− qδ

q − 1

)
− n

√
δ(1−Δ)− εn1 ,

from y. Picking ε < 1/n1, we get decoding up to the claimed fraction of
errors. �

194 8 List Decoding of Concatenated Codes

Comment on the error-correction performance of above: The bound
of (8.28) is attractive only for very large values of Δ, or in other words when
the rate of the outer Reed-Solomon code is rather small. For example, for the
binary case q = 2, even for Δ = 3/4, the bound does not even achieve the
product bound (namely, Δδ/2), for any value of δ in the range 0 < δ < 1/2
(in fact, the bound as stated in (8.28) is negative unless Δ is quite large).
However, the merit of the bound is that as Δ gets very close to 1, the bound
(8.28) approaches the quantity (1−1/q)(1−

√
1− qδ

q−1), and since the relative
designed distance of the concatenated code is Δ · δ → δ, it approaches the
Johnson bound on list decoding radius. Therefore for Δ → 1, the result of
Theorem 8.7 performs very well and decodes almost up to the Johnson bound,
and hence beyond the product bound, for almost the entire range of the inner
code distances 0 < δ < 1/2. In particular, for Δ → 1 and δ → (1 − 1/q),
the bound tends to (1− 1/q), permitting us to list decode up to close to the
maximum possible fraction (1− 1/q) of errors.

Alternative Decoding Bound By slightly modifying the analysis used
in proving the combinatorial bound of Proposition 8.5, one can prove the
following alternative bound instead of (8.8).

∑
c∈C

(
max

{(
1− Δ(r, c)

R̃
), 0

})2

≤ q

q − 1
, (8.33)

where we use the same notation as in the statement of Proposition 8.5 and
R̃ is defined as

R̃
def=

(
1−

√
1− qδ

q − 1

)2 (
1− 1

q

)
n .

(The only change required in the proof is to replace the lower bound on
Wi from Equation (8.20) with the alternative lower bound Wi ≥ (

1 −
ei

R̃

)√
n(q − 1)/q, which follows easily from the definition of Wi in Equation

(8.19).)
Now, replacing the choice of weights in Equation (8.30) in the proof of

Theorem 8.7 by
wi,α

def= max
{(

1− ei,α

R̃

)
, 0
}

,

and then using (8.33), we obtain a decoding algorithm to decode up to a
fraction (

1− 1
q

)(
1−

√
1− qδ

q − 1

)2(
1−

√
1−Δ

(1− 1/q)

)
(8.34)

of errors. This bound is positive whenever Δ > 1/q, and in general appears
incomparable to that of (8.28). However, note that even for Δ very close to
1, the bound (8.34) does not approach the Johnson bound, except for δ very

8.5 Decoding a General Concatenated Code 195

close to (1−1/q). But as with the bound (8.28), for Δ → 1 and δ → (1−1/q),
the above tends to a fraction (1− 1/q) of errors. In particular, it can also be
used, instead of (8.28), to obtain the results outlined in the next section for
highly list decodable codes.

8.5.3 Consequence for Highly List Decodable Codes

We now apply Theorem 8.7 with a suitable choice of parameters to obtain
an alternative construction of codes list decodable to a fraction (1− 1/q− ε)
of errors and which have rate Ω(ε6). Compared to the construction of Corol-
lary 8.4 that was based on a concatenation of AG-codes with Hadamard
codes, the rate is slightly worse – namely by a factor of O(log(1/ε)). But the
following construction offers several advantages compared to that of Corol-
lary 8.4. Firstly, it is based on outer Reed-Solomon codes, and hence does not
suffer from the high construction and decoding complexity of AG-codes. In
particular, the claim of polynomial time decoding is unconditional and does
not depend on having access to precomputed advice information about the
outer code. Secondly, the inner code can be any linear code of large minimum
distance, and not necessarily the Hadamard code. In fact, picking a random
code as inner code will give a highly efficient probabilistic construction of the
code that has the desired list decodability properties with high probability.

In the next section (Section 8.6) we will present a construction of highly
list decodable codes of rate Ω(ε4). Even with this substantial improvement,
the bound proved in this section is not strictly subsumed. This is for two rea-
sons. Firstly, the results of Section 8.6 apply only to binary linear codes, where
as the result below applies to linear codes over any finite field Fq. Secondly,
while the deterministic construction complexity of both the constructions in
this section and the one with rate Ω(ε4) are almost similar (both of them
being fairly high), the codes of this section have very efficient probabilistic
constructions, where as we do not know a faster probabilistic construction
for the codes of Section 8.6. In conclusion, despite the improvement in rate
that will be obtained in Section 8.6, the construction presented next remains
interesting.

Theorem 8.8. For every fixed prime power q, the following holds: For ev-
ery ε > 0, there exists a family of linear codes over Fq with the following
properties:

(i) A description of a code of blocklength, say n, in the family can be con-
structed deterministically in nO(1/ε4) time. For probabilistic construc-
tions, a Las Vegas construction can be obtained in time which with
high probability will be O(n log n/ε4), or a Monte Carlo construction
that has the claimed properties with high probability can be obtained in
O(log n/ε4) time.

(ii) Its rate is Ω(ε6) and its relative minimum distance is (1−1/q−O(ε2)).

196 8 List Decoding of Concatenated Codes

(iii) There is a polynomial time list decoding algorithm for every code in the
family to perform list decoding up to a fraction (1− 1/q − ε) of errors.

Proof: We will use Theorem 8.7 with the choice of parameters Δ = 1−O(ε2)
and δ = 1−1/q−O(ε2). Substituting in the bound (8.28), the fraction of errors
corrected by the decoding algorithm from Section 8.5.2 will be (1− 1/q− ε),
which handles Property (iii) claimed above. Also, the relative distance of the
code is at least Δ · δ, and is thus (1 − 1/q − O(ε2)), verifying the distance
claim in (ii) above. The outer Reed-Solomon code has rate 1 − Δ = Ω(ε2).
For the inner code, if we pick a random linear code, then it will meet the
Gilbert-Varshamov bound (R = 1 − Hq(δ)) with high probability (cf. [193,
Chapter 5]). Therefore, a random inner code of rate Ω(ε4) will have relative
distance δ = 1 − 1/q − O(ε2), exactly as we desire. The overall rate of the
concatenated code is just the product of the rates of the Reed-Solomon code
and the inner code, and is thus Ω(ε2 · ε4) = Ω(ε6), proving Property (ii).

We now turn to Property (i) about the complexity of constructing
the code. We may pick the outer Reed-Solomon code over a field of size
at most O(n). Hence, the inner code has at most O(n) codewords and
thus dimension at most O(logq n). The inner code can be specified by its
O(logq n) × O(logq n/ε4) generator matrix G. To construct an inner code
that has relative distance (1 − 1/q − O(ε2)), we can pick such a generator
matrix G at random, and then check, by a brute-force search over the at most
O(n) codewords, that the code has the desired distance. Since the distance
property holds with high probability, we conclude that the generator matrix
an inner code with the required rate and distance property can be found in
O(n log2 n/ε4) time with high probability. Allowing for a small probability
for error, a Monte Carlo construction can be obtained in O(log2 n/ε4) prob-
abilistic time by picking a random linear code as inner code (the claimed
distance and list decodability properties (ii), (iii) will then hold with high
probability). As the outer Reed-Solomon code is explicitly specified, this im-
plies that the description of the concatenated code can be found within the
same time bound.

A naive derandomization of the above procedure will require time which is
quasi-polynomial in n. But the construction time can be made polynomial by
reducing the size of the sample space from which the inner codes is picked. For
this, we note that, for every prime power q, there is a small sample space of
q-ary linear codes of any desired rate, called a “Wozencraft ensemble” in the
literature, with the properties that: (a) a random code can be drawn from this
family using a linear (in the blocklength) number of random elements from
Fq, and (b) such a code will meet the Gilbert-Varshamov bound with high
probability. We record this fact together with a proof as Proposition 8.10 at
the end of this section. Applying Proposition 8.10 for the choice of parameters
b = O(ε−4), k = O(logq n), and using the fact that for small γ, H−1

q (1 −
O(γ2)) is approximately (1− 1/q−O(γ)), we obtain a sample space of linear
codes of size qO(logq n/ε4) = nO(1/ε4) which includes a code of rate Ω(ε4)

8.5 Decoding a General Concatenated Code 197

and relative distance (1−1/q−O(ε2)). One can simply perform a brute-force
search for the desired code in such a sample space. Thus one can find an inner
code of rate Ω(ε4) and relative distance (1− 1/q − O(ε2)) deterministically
in nO(1/ε4) time. Moreover, picking a random code from this sample space,
which works just as well as picking a general random linear code, takes only
O(log n/ε4) time. This reduces the probabilistic construction times claimed
earlier by a factor of log n. Hence a description of the overall concatenated
code can be obtained within the claimed time bounds. This completes the
verification of Property (i) as well. �
Obtaining an explicit construction: The high deterministic construction
complexity or the probabilistic nature of construction in Theorem 8.8 can be
removed at the expense of a slight worsening of the rate of the code. One
can pick for inner code an explicitly specified q-ary code of relative distance
(1−1/q−O(ε2)) and rate Ω(ε6). A fairly simple explicit construction of such
codes is known [6] (see also [164]). This will give an explicit construction of
the overall concatenated code with rate Ω(ε8). We record this below.

Theorem 8.9. For every fixed prime power q, the following holds: For every
ε > 0, there exists a family of explicitly specified linear codes over Fq with
the following properties:

(i)Its rate is Ω(ε8) and its relative minimum distance is (1 − 1/q −O(ε2)).
(ii)There is a polynomial time list decoding algorithm for every code in the

family to perform list decoding up to a fraction (1 − 1/q − ε) of errors.

A Small Space of Linear Codes Meeting the Gilbert-Varshamov
Bound We now turn to the result about a small space of linear codes meeting
the Gilbert-Varshamov bound. Such an ensemble of codes is referred to as a
“Wozencraft ensemble” in the literature. Recall that we made use of such a
result in the proof of Theorem 8.8.

Proposition 8.10 (cf. [197]). For every prime power q, and every integer
b ≥ 1, the following holds. For all large enough k, there exists a sample space,
denoted Sq(b, n) where n

def= (b + 1)k, consisting of [n, k]q linear codes of rate
1/(b + 1) such that:

(i) There are at most qbn/(b+1) codes in Sq(b, n). In particular, one can pick
a code at random from Sq(b, n) using at most O(n log q) random bits.

(ii) A random code drawn from Sq(b, n) meets the Gilbert-Varshamov bound,
i.e. has minimum distance n ·H−1

q

(
b

b+1 − o(1)
)
, with overwhelming (i.e.

1− o(1)) probability.

Proof: The fact that a code that meets the Gilbert-Varshamov bound can be
picked by investing a linear amount of randomness is by now a folklore result.
The proof we present here follows the construction due to Weldon [197], which
in turn was a generalization of a construction for the rate 1/2 case that

198 8 List Decoding of Concatenated Codes

Justesen used in the first explicit construction of a family of asymptotically
good binary codes [110].

Let α be a primitive element of the finite field GF(qk), so that {αi : 0 ≤
i < qk − 1} are all the non-zero elements of GF(qk). A code in Sq(b, n) will
be specified by a b-tuple Ib = (i0, i1, . . . , ib−1) where each is, 0 ≤ s ≤ b−1, is
an integer that satisfies 0 ≤ is ≤ qk − 1. Note that there are qkb = qbn/(b+1)

codes in the sample space Sq(b, n), since there are exactly so many b-tuples.
A random code in Sq(b, n) can be picked by choosing a random b-tuple Ib.
Hence the sample space Sq(b, n) meets the requirement (i).

A message a ∈ Fk
q , will be encoded by a code indexed by a b-tuple

(i0, i1, . . . , ib−1) as follows: view a as a field element γ ∈ GF(qk) (us-
ing some fixed representation of GF(qk) over GF(q)), then encode it as
〈γ, γαi0 , γαi1 , . . . , γαib−1 〉. This gives a (b + 1)-tuple over GF(qk) or equiva-
lently a word of length (b + 1)k = n over GF(q), as desired.

The crucial observation used to prove (ii) is the following. Any non-zero
vector v ∈ Fn

q can belong to at most one of the codes in Sq(b, n). Indeed, it
is easily checked that the b-tuple associated with a code containing v can be
uniquely reconstructed from v. Property (ii) is now a simple consequence of
this fact. Indeed, the number of vectors v ∈ Fn

q of Hamming weight at most
w is at most qHq(w/n)n (see for example [193, Chapter 1]). Applying this to
w = d

def= n ·H−1
q

(
b

b+1 − ζ
)
, the number of vectors of Hamming weight less

than or equal to d is at most q(b
b+1−ζ)n. Since a non-zero vector belongs to at

most one code among those in Sq(b, n), this implies that the fraction of codes
in Sq(b, n) that have some non-zero codeword of weight less than or equal to
d is at most q−ζn. Picking ζ = o(1), say 1/

√
n, we conclude that a random

code from Sq(b, n) has minimum distance greater than n ·H−1
q

(
b

b+1 − o(1)
)

with very high (i.e., (1− o(1)) probability. �

8.6 Improved Rate Using Tailor-Made Concatenated
Code

We now proceed to a construction of highly list decodable codes that im-
proves over the rate of ε6 that was achieved by Theorem 8.8 (and also by
Corollary 8.4). The results of this section apply only to binary linear codes.
Recall that binary codes that can be list decoded from (1/2− ε) errors using
polynomial sized lists can have rate at best Ω(ε2). We will be able to attain
a rate of Ω(ε4). The formal result is stated below.

Theorem 8.11. There exist absolute constants b, d > 0 such that for each
fixed ε > 0, there exists a polynomial time constructible binary linear code
family C with the following properties:

1. A code of blocklength N from the family C can be constructed in NO(1/ε2)

time deterministically.

8.6 Improved Rate Using Tailor-Made Concatenated Code 199

2. The rate R(C) of C is at least ε4

b , and its relative distance δ(C) is at least
(1/2− ε).

3. There is a polynomial time list decoding algorithm that can list decode
codes in C from up to a fraction (1/2− ε) of errors, using lists of size at
most d/ε2. �

The above theorem will follow from Theorem 8.14, which is stated and proved
in Section 8.6.2. The basic idea is to use a concatenated code with the outer
code being a Reed-Solomon code and the inner code being a “tailor-made”
one. The inner code will be chosen so that it possesses a rather peculiar
looking combinatorial property, which is formalized in Lemma 8.12. This
property will be very useful when it is used in conjunction with the soft
decoding algorithm for Reed-Solomon codes (Theorem 6.26). We first turn
to the existence and construction of the necessary inner code.

8.6.1 The Inner Code Construction

Existence of a “Good” Code We now prove the existence of codes that
will serve as excellent inner codes in our later concatenated code construction.
The proof is an adaptation of that of Theorem 5.8. We will then show how
such a code can be constructed in 2O(n) time (where n is the blocklength)
using an iterative greedy procedure.

Lemma 8.12. There exist absolute constants σ, A > 0 such that for any
ε > 0 there exists a binary linear code family C with the following properties:

1. The rate of the family satisfies R(C) = σε2

2. For every code C ∈ C and every x ∈ {0, 1}n where n is the blocklength of
C, we have ∑

c∈C
Δ(x,c)≤(1/2−ε)n

(
1− 2Δ(x, c)

n

)2

≤ A . (8.35)

Proof: For every large enough n, we will prove the existence of a binary linear
code Ck of blocklength n and dimension k ≥ σε2n which satisfies Condition
(8.35) for every x ∈ {0, 1}n.

The proof will follow very closely the proof of Theorem 5.8 and in par-
ticular we will again build the code Ck iteratively in k steps by randomly
picking the k linearly independent basis vectors b1, b2, . . . , bk in turn. De-
fine Ci = span(b1, . . . , bi) for 1 ≤ i ≤ k (and define C0 = {0}). The key
to our proof is the following potential function WC defined for a code C of
blocklength n (compare with the potential function (5.12) from the proof of
Theorem 5.8):

WC =
1
2n

∑
x∈{0,1}n

exp2

⎛
⎝ n

A
·

∑
c∈C:Δ(x,c)≤(1/2−ε)n

(
1− 2Δ(x, c)

n

)2

⎞
⎠ , (8.36)

200 8 List Decoding of Concatenated Codes

where, for readability, we used exp2(z) to denote 2z. (The constant A will be
fixed later in the proof, and we assume that A > ln 4.) Denote the random
variable WCi by the shorthand Wi. For x ∈ {0, 1}n, define

Ri
x =

∑
c∈Ci

Δ(x,c)≤(1/2−ε)n

(
1− 2Δ(x, c)

n

)2

, (8.37)

so that
Wi = 2−n

∑
x

exp2

(n

A
· Ri

x

)
.

Now, exactly as in the proof of Theorem 5.8, we have Ri+1
x = Ri

x+Ri
x+bi+1

when bi+1 is picked outside the span of {b1, b2, . . . , bi}. Now, arguing as in
the proof of Theorem 5.8, one can deduce that

E[Wi+1|Wi = Ŵi] ≤ Ŵ 2
i

1− 2i−n
. (8.38)

when the expectation is taken over a random choice of bi+1 outside
span(b1, . . . , bi).

Applying (8.38) repeatedly for i = 0, 1, . . . , k − 1, we conclude that there
exists an [n, k]2 binary linear code C = Ck with

WC = Wk ≤ W 2k

0

1− k2k−n
. (8.39)

If we could prove, for example, that WC = O(1), then this would imply, using
(8.36), that Rk

x ≤ A for every x ∈ {0, 1}n and thus C would satisfy Condition
(8.35), as desired. To show this, we need an estimate of (upper bound on)
W0, to which we turn next.

Define a = (1/2− ε)n. Since C0 consists of only the all-zeroes codeword,
we have R0

x = (1 − 2wt(x)/n)2 if wt(x) ≤ a and R0
x = 0 otherwise (here we

use wt(x) = Δ(x,0) to denote the Hamming weight of x). We now have

W0 = 2−n
∑

x∈{0,1}n

exp2

(n

A
R0

x

)

≤ 1 + 2−n
a∑

i=0

(
n

i

)
exp2

(n

A

(
1− 2i

n

)2)

≤ 1 + n2−n exp2

(
max
0≤i≤a

{
H
(i

n

)
n +

4n

A

(1
2
− i

n

)2})
≤ 1 + n2un (8.40)

where u
def= max0≤y≤(1/2−ε)

{
H(y)− 1 + 4

A (1
2 − y)2

}
. We now claim that for

every y, 0 ≤ y ≤ 1/2, we have H(y) ≤ 1 − 2
ln 2 (1

2 − y)2. One way to prove
this is to consider the Taylor expansion around 1/2 of H(y), which is valid

8.6 Improved Rate Using Tailor-Made Concatenated Code 201

for the range 0 ≤ y ≤ 1/2. We have H ′(1/2) = 0 and H ′′(1/2) = −4/ ln 2.
Also it is easy to check that all odd derivatives of H(y) at y = 1/2 are non-
negative while the even derivatives are non-positive. Thus H(y) ≤ H(1/2)−
H ′′(1/2) (1/2−y)2

2 = 1− 2
ln 2 (1

2 − y)2. Therefore

u ≤ max
0≤y≤(1/2−ε)

(4
A
− 2

ln 2

)(1
2
− y

)2

= −4
(1

ln 4
− 1

A

)
ε2 , (8.41)

since A > ln 4. Combining (8.39), (8.40) and (8.41), it is now easy to argue
that we will have WC = Wk = O(1) as long as k < −un, which will be
satisfied if k < 4(1

ln 4 − 1
A)ε2n. Thus the statement of the lemma holds, for

example, with A = 2 and σ = 0.85. � (Lemma 8.12)

Remark: Arguing exactly as in the remark following the proof of Theo-
rem 5.8, one can also add the condition δ(C) ≥ (1/2 − ε) to the claim of
Lemma 8.12. The proof will then pick bi+1 randomly from among all choices
such that span(b1, b2, . . . , bi+1) ∩B(0, (1

2 − ε)n) = ∅.

A Greedy Construction of the “Inner” Code We now discuss how a
code guaranteed by Lemma 8.12 can be constructed in a greedy fashion. We
will refer to some notation that was used in the proof of Lemma 8.12. The
algorithm works as follows:

Algorithm Greedy-Inner:

Parameters: Dimension k; ε, A > 0 (where A is the absolute constant from
Lemma 8.12)

Output: A binary linear code C = Greedy(k, ε) with dimension k, block-
length n = O(k/ε2) and minimum distance at least (1/2− ε)n such that for
every x ∈ {0, 1}n, Condition (8.35) holds.

1. Start with b0 = 0.
2. For i = 1, 2, . . . , k:

– Let Ui = {x ∈ {0, 1}n : span(b1, b2, . . . , bi−1, x)∩B(0, (1/2−ε)n) = ∅ }.
– Pick bi ∈ Ui that minimizes the potential function Wi = 2−n

∑
x 2

n
A ·Ri

x ,
where Ri

x is as defined in Equation (8.37) (break ties arbitrarily)
3. Output C = span(b1, b2, . . . , bk).

The following result easily follows from the proof of Lemma 8.12 since each
of the k iterations of the for loop above can be implemented to run in 2O(n)

time.

Lemma 8.13. Algorithm Greedy-Inner constructs a code Greedy(k, ε)
with the desired properties in k · 2O(n) time.

202 8 List Decoding of Concatenated Codes

8.6.2 The Concatenated Code and the Decoding Algorithm

The statement of Theorem 8.11 that we set out to prove, follows immedi-
ately from the concatenated code construction guaranteed by the following
theorem.

Theorem 8.14. There exist absolute constants b, d > 0 such that for every
integer K and every ε > 0, there exists a concatenated code CK

def= RS⊕
Greedy(m, ε/2) (for a suitable parameter m) that has the following proper-
ties:

1. CK is a linear code of dimension K, blocklength N ≤ bK
ε4 , and minimum

distance at least (1
2 − ε)N .

2. The generator matrix of CK can be constructed in NO(ε−2) time.
3. CK is ((1

2 − ε)N, d/ε2)-list decodable; i.e. any Hamming ball of radius
(1/2− ε)N has at most O(ε−2) codewords of CK .

4. There exists a polynomial time list decoding algorithm for CK that can
correct up to (1/2− ε)N errors.

Proof: The code CK is constructed by concatenating an outer Reed-Solomon
code CRS over GF(2m) of blocklength n0 = 2m and dimension k0 = K/m
(for some integer m which will be specified later in the proof) with an inner
code Cinner = Greedy(m, ε/2) (as guaranteed by Lemma 8.13). Since the
blocklength of Cinner is n1 = O(m

ε2), the concatenated code CK has dimension
K and blocklength

N = n0n1 = O
(n0m

ε2

)
. (8.42)

and minimum distance D at least

D ≥ N
(
1− K

mn0

)(1
2
− ε

2

)
. (8.43)

For ease of notation, we often hide constants using the big-Oh notation in
what follows, but in all these cases the hidden constants will be absolute
constants that do not depend upon ε. By Lemma 8.13, Cinner is constructible
in 2O(n1) = 2O(m/ε2) time, and since m = lg n0, the generator matrix for CK

can be constructed in NO(ε−2) time. This proves Property 2 claimed in the
theorem.

We will now present a polynomial time list decoding algorithm for CK

to correct a fraction (1/2− ε) of errors using lists of size O(1/ε2). This will
clearly establish both Properties 3 and 4 claimed in the theorem.

The decoding algorithm will follow the same approach as that of Theo-
rems 8.2 and 8.7. Let y ∈ {0, 1}N be any received word. We wish to find a
list of all codewords c ∈ CK such that Δ(y, c) ≤ (1/2− ε)N . For 1 ≤ i ≤ n0,
denote by yi the portion of y in block i of the codeword (i.e. the portion
corresponding to the encoding by Cinner of the ith Reed-Solomon symbol).

8.6 Improved Rate Using Tailor-Made Concatenated Code 203

Now, consider the following decoding algorithm for CK . First, the inner
codes are decoded by a brute force procedure that goes over all codewords.
Specifically, for each position i, 1 ≤ i ≤ n0, of the outer Reed-Solomon code,
and for each α ∈ GF(2m), the inner decoder computes a set of weights wi,α

defined by:

wi,α = max
{(1

2
− ε

2
−Δ

(
yi, Cinner(α)

))
, 0
}

(8.44)

Once again all the n0 inner decodings can be performed in O(n0 ·2m ·m/ε2) =
O(n2

0m/ε2) time, and thus certainly in O(N2) time.
These weights are then passed to the soft decoding algorithm for Reed-

Solomon codes from Theorem 6.26. To analyze the performance of the soft
decoding algorithm, we will make use of the crucial combinatorial property
of Cinner which is guaranteed by Lemmas 8.12 and 8.13. Using this property
of Cinner, we have, for each i, 1 ≤ i ≤ n0,∑

α∈GF(2m)

w2
i,α ≤ B′ , (8.45)

for some absolute constant B′.
Using the soft decoding algorithm to complete the decoding implies that

one can find, in time polynomial in n0 and 1/γ, a list of all codewords c ∈ CK

that satisfy

n0∑
i=1

wi,ci ≥
√√√√(

n0 − n0 −K/m + 1
1 + γ

)
·
∑
i,α

w2
i,α . (8.46)

In the above, γ > 0 is a parameter to be set later, and we have abused notation
to denote wi,ci = wi,αi where αi ∈ GF(2m) is such that Cinner(αi) = ci.

The soft decoding algorithm, used as stated in Theorem 6.26, can decode
even with the choice γ = 0 in the above Condition (8.46). However, with
a positive value of γ, we can appeal to the weighted Johnson bounds from
Chapter 3, specifically the result stated in Part (ii) of Corollary 3.7, to con-
clude that there will be at most (1+1/γ) codewords c that satisfy Condition
(8.46) for any choice of weights wi,α. Hence, our decoding algorithm, too, will
output only a list of at most O(1/γ) codewords.

We now analyze the number of errors corrected by the algorithm. Using
(8.44) and (8.45), we notice that Condition (8.46) will be satisfied if

n0∑
i=1

(1
2
− ε

2
− Δ(yi, ci)

n1

)
≥
√(

γn0 +
K

m

)
· n0B′

⇐= Δ(y, c) ≤ N

(
1
2
− ε

2
−
√

B′
(
γ +

K

mn0

))

⇐= Δ(y, c) ≤
(1

2
− ε

)
N ,

204 8 List Decoding of Concatenated Codes

where the last step holds as long as we pick γ ≤ ε2

8B′ and m such that

K

mn0
=

K

m2m
≤ ε2

8B′ . (8.47)

Thus we have a decoding algorithm that outputs a list of all O(1/γ) = O(ε−2)
codewords that differ from y in at most (1/2−ε)N positions. This establishes
Properties 3 and 4 claimed in the theorem.

Also, by (8.47), we have mn0 = O(K/ε2). Plugging this into (8.42) and
(8.43), we have that the blocklength N of CK satisfies N = O(K/ε4) and the
distance D satisfies D ≥ (1/2−ε)N . This establishes Property 1 as well, and
completes the proof of the theorem. �

Discussion: The time required to construct a code with the properties
claimed in Theorem 8.14, though polynomial for every fixed ε, grows as
NO(ε−2). It is desirable to obtain a construction time of the form O(f(ε)nc)
where c is a fixed constant independent of ε, for some arbitrary function f .
A family whose codes can be constructed within such time bounds is often
referred to as being uniformly constructive (see [6] for a formal definition).

If one uses the best known algebraic-geometric codes (namely those dis-
cussed in Section 6.3.9) as the outer code instead of Reed-Solomon codes, one
can carry out the code construction of Theorem 8.14 in 2O(ε−2 log(1/ε))N c time
for a fixed constant c (the constant c will depend upon the time required to
construct the outer algebraic-geometric code). This is not entirely satisfying
since the construction complexity of the necessary algebraic-geometric codes
is still quite high. A further drawback is that the promise of a polynomial time
decoding algorithm will hinge on assumptions about specific representations
of the AG-code.

The construction of Theorem 8.8 had a similar drawback in terms of high
deterministic construction time. Nevertheless, it had a highly efficient proba-
bilistic construction that had the claimed properties with high probability. A
similar probabilistic construction for the codes of Theorem 8.11 is not known.
The reason for this is that the existence result of Lemma 8.12 is not known
to hold with high probability for a random code (unlike the situation in The-
orem 8.8 where it is known that the rate vs. distance trade-off of a random
linear code meets the Gilbert-Varshamov bound with high probability). Thus
the following is an interesting open question:

Question 8.15. 1. Is there a randomized (Monte Carlo) construction of a
family of binary linear codes of rate Ω(ε4) list decodable up to a fraction
(1/2− ε) of errors, that runs in, say, quadratic time in the blocklength?

2. Is there a uniformly constructive family of binary linear codes which can
be list decoded efficiently from a fraction (1/2− ε) errors and which have
rate Ω(ε4) or better?

8.7 Open Questions 205

8.7 Open Questions

In addition to the above, there are two central open questions regarding the
contents of this chapter. These are listed below.

Question 8.16. Let C be a q-ary concatenated code of designed distance Δ · δ
with the outer code being a Reed-Solomon code of relative distance Δ, and
the inner code being an arbitrary q-ary code of relative distance δ. Is there
a polynomial time list decoding algorithm for C to decode up to its Johnson
radius? In other words, is there a polynomial time algorithm to list decode
up to a fraction (1− 1/q)

(
1−

√
1− Δ·δ

(1−1/q)

)
of errors?

In fact the following “easier” question is also open. As mentioned earlier,
the GMD algorithm can be used to unique decode such codes up to the
product bound (i.e. a fraction Δδ/2 of errors) in polynomial time [59, 110].
The question below simply asks if one can always, for every concatenated code
with an outer Reed-Solomon code, perform efficient list decoding beyond the
product bound.

Question 8.17. Let C be a q-ary concatenated code of designed distance Δ · δ
with the outer code being a Reed-Solomon code of relative distance Δ, and
the inner code being an arbitrary q-ary code of relative distance δ. Is there
a polynomial time list decoding algorithm for C to decode up to a fraction
f(Δ, δ) of errors, where f is a real-valued function that takes values in [0, 1−
1/q) and which satisfies f(Δ, δ) > Δδ

2 in the entire range 0 < Δ < 1 and
0 < δ < 1 − 1/q ? In other words, is there a polynomial time algorithm to
always list decode such concatenated codes beyond the product bound ?

Finally, we state the open question concerning the best rate of a construc-
tive family of binary codes with very high list decodability.

Question 8.18. Is there a polynomial time constructible family of binary codes
which have rate Ω(εa) for some a < 4 and which have a polynomial time list
decoding algorithm to decode up to a fraction (1/2− ε) of errors ?

We know that existentially a = 2 is achievable and that this is the best
possible.

We note that even if Question 8.16 is answered in the affirmative, the rate
achievable for a list decoding radius of (1 − 1/q − ε) is only O(ε6 log(1/ε)).
This is because we need to have Δ = 1 − O(ε2) and δ = (1 − 1/q − O(ε2))
in order for the Johnson radius to be (1− 1/q − ε). The former implies that
the rate of the Reed-Solomon code is O(ε2) and the latter, by appealing to
the linear programming bounds [139], implies that the rate of the inner code
is O(ε4 log(1/ε)). The overall rate is thus at most O(ε6 log(1/ε)). An answer
in the affirmative to Question 8.18, therefore, has to either not be based on
concatenation at all, or must use a special purpose construction, akin to the

206 8 List Decoding of Concatenated Codes

one in Section 8.6, which can be list decoded beyond its Johnson radius. In
the next chapter, we will present a probabilistic construction with Ω(ε3) rate,
but the decoding time will be sub-exponential as opposed to polynomial.

8.8 Bibliographic Notes

Concatenated codes were defined and studied extensively in the seminal
Ph.D. work of Forney [59], and by now have deservedly become standard
textbook material. Forney [60] developed a Generalized Minimum Distance
(GMD) decoding algorithm for Reed-Solomon codes, and used it as a soft de-
coding algorithm to decode concatenated schemes with outer Reed-Solomon
code. He presented a detailed estimation of the probability of decoding er-
ror for such a scheme. Justesen [110] used a concatenated scheme to give
the first explicit construction of an asymptotically good binary code family,
thereby refuting the popular myth existing at that time that explicitly spec-
ified codes would probably never be asymptotically good. Justesen also gave
an algorithm using GMD decoding to decode his concatenated codes up to
the product bound (i.e. half the designed distance). In fact, his result im-
plicitly shows that any concatenated code whose outer code has an efficient
errors-and-erasures decoding algorithm (which in turn implies a GMD algo-
rithm by results of Forney [60]) can be uniquely decoded up to the product
bound. The GMD based algorithm for unique decoding concatenated codes
up to the product bound is also described in detail in Appendix A of this
book.

The inner decoding stage in all these algorithms passed to the outer Reed-
Solomon decoder at most one field element together with an associated weight
(confidence information) for each outer codeword position. This was also the
case in a recent work of Nielsen [145] who investigated in detail decoding
algorithms for concatenated codes where the inner code is decoded uniquely
but instead of the GMD algorithm, the weighted list decoding algorithm
(from Chapter 6) is used for decoding the outer Reed-Solomon code. In con-
trast, in the algorithms discussed in this chapter, the inner decoders pass
to the outer Reed-Solomon decoder not one, but several field elements, each
with an associated weight, as candidate symbols for each position. We should
mention that Nielsen [145] also considers a decoding algorithm where the in-
ner codes are list decoded beyond half the minimum distance, but does not
present a quantitative analysis of such an algorithm. Indeed to perform such
an analysis one needs at least a partial knowledge of the weight distribution
of cosets of the inner code, which is a highly non-trivial task in itself. The
result of Proposition 8.5 from this chapter provides a non-trivial, and appar-
ently new, bound on the weight distribution of cosets given the knowledge
of only the minimum distance of the code. We believe, though, that to really
reap the benefits of the soft Reed-Solomon decoder in concatenated code con-
structions, one must use special purpose inner codes for which we have good

8.8 Bibliographic Notes 207

bounds on the weight distributions of cosets. In fact, our results in Section 8.6
follow this approach, but we believe there is still lots of improvements to be
made.

The decoding algorithms from Section 8.4 when the inner code is the
Hadamard code appear in [89]. The results of Section 8.5 appear in [90]. The
code construction and decoding algorithm of Section 8.6 appear in [80].

9 New, Expander-Based List Decodable Codes

9.1 Introduction

In the previous chapters, we have already seen constructions of asymptotically
good codes of good rate over both large alphabets (the AG-codes from Chap-
ter 6) and the binary alphabet (the concatenated codes from Chapter 8), that
are efficiently list decodable up to a “maximum” possible radius. By “max-
imum” possible radius we mean list decoding up to a fraction (1 − 1/q − ε)
of errors for q-ary codes. This translates into a fraction (1 − ε) of errors for
codes over large enough alphabets, and a fraction (1/2−ε) of errors for binary
codes. For codes with such large list decodability, which we called “highly list
decodable codes”, the goal is to find efficient constructions that achieve good
rate (typically of the form Ω(εa) for some reasonably small a), together with
efficient list decoding algorithms.

The earlier results achieve fairly non-trivial trade-offs in this regard. The
list decoding algorithm for AG-codes from Chapter 6 implies highly list de-
codable codes over an alphabet of size O(1/ε4) that have rate Ω(ε2). The
results of the previous chapter on concatenated codes give constructions of
highly list decodable binary codes of rate Ω(ε4).

One shortcoming of the former result is that the necessary AG-codes are
very complicated to construct and the known decoding algorithms need a non-
standard representation of the code for the claim of polynomial runtime to
hold. Families of Reed-Solomon codes also offer similar list decodability with
a rate of Ω(ε2), but their alphabet size is at least as large as the blocklength
and hence they do not achieve a alphabet size that is a constant dependent
only on ε. In fact, other than AG-codes, there were no other known families
of codes that are list decodable to a fraction (1−ε) of errors, have reasonably
large rate, and are defined over a constant-sized alphabet.

The other shortcomings of the above mentioned results are that there is
potential for improvement in the rate. The existential results (Chapter 5)
show that a rate Ω(ε) is possible for highly list decodable codes over large
alphabets, and a rate Ω(ε2) is possible for binary codes. Thus the constructive
results are not optimal with respect to the rate (though they are not off by
very much).

In this chapter, we present novel constructions of list decodable codes
that address the above shortcomings. Our codes are simple to construct and

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 209-250, 2004.
© Springer-Verlag Berlin Heidelberg 2004

210 9 New, Expander-Based List Decodable Codes

decode, and share the common thread of using expander-like bipartite graphs
as a component (the specific graphs that we use are referred to as dispersers
in the literature). The bipartite graphs redistribute the symbols in such a
way that information from a small fraction (say, ε) of correct nodes on the
right is “dispersed” to a large fraction (say, 1/2) of nodes on the left. They
thereby enable the design of efficient decoding algorithms that correct a large
number of errors through various forms of “voting” procedures.

The basic idea behind the constructions of this chapter will also find
use later in Chapter 11, where we will present codes of good (in fact, near-
optimal) rate that are uniquely decodable up to a large fraction of errors in
linear time. This indicates the quite general applicability and power of the
techniques used in this chapter.

An important combinatorial tool used in our constructions are “pseudo-
linear codes”. We view the construction and use of pseudolinear codes as
being of independent interest, and hope that it will find several applications
in the future.1 Pseudolinear codes possess the useful properties of efficient en-
coding and succinct representation which all linear codes automatically have,
but they have the additional nice property that random pseudolinear codes
(with suitable parameters) inherit the same list-of-L decoding properties as
completely general random codes.

We next present a detailed statement of the results of this chapter, fol-
lowed by an overview of the main techniques used.

9.2 Overview of Results and Techniques

9.2.1 Main Results

Our constructions of highly list decodable codes give the following:

(1) Codes of rate Ω(ε2) over an alphabet of size 2O(ε−1 log(1/ε)), list decod-
able up to a fraction (1− ε) of errors in near-quadratic time.

(2a) Codes of rate Ω(ε) over an alphabet of size 2O(ε−1 log(1/ε)), list decod-
able up to a fraction (1− ε) of errors in sub-exponential time.

(2b) Binary codes of rate Ω(ε3) list decodable up to a fraction (1/2− ε) of
errors in sub-exponential time.

(3) Codes of rate Ω(t−3ε2+2/t) over an alphabet of size O(1/εb), list de-
codable up to a fraction (1 − ε) of errors. Here t ≥ 1 is an arbitrary
integer and b > t an arbitrary real.

The first three constructions (1, 2a, 2b) use the expander-based approach
mentioned in the introduction. The last construction does not use ex-
panders/dispersers and is based on multiple concatenated codes combined

1Pseudolinear codes are also used in the next chapter on list decoding from
erasures.

9.2 Overview of Results and Techniques 211

together by juxtaposing symbols together — we call such codes juxtaposed
codes.2 We discuss these codes also in this chapter since their construction
has much the same motivation as that of (1). Moreover, they also use some
of same machinery that construction (1) uses; specifically they too use pseu-
dolinear codes as inner codes in a concatenated scheme. The main advantage
of the juxtaposed code construction is that they can achieve better alphabet
size than the construction (1), at the expense of a slight worsening of the
rate.

The detailed specification of all parameters of our constructions are listed
in Figure 9.1. We next present a discussion of the individual results and
compare them with previously known constructions.

No Alphabet Decoding Rate Encoding Decoding Const. time
radius time time (probabilistic)*

1 2ε−1 log(1/ε) 1 − ε ε2 n log n n2 log n log2 n/ε

2a 2ε−1 log(1/ε) 1 − ε ε n2(1−γ) log2 n 2nγ log(1/ε) n2(1−γ)/ε

2b 2 1/2 − ε ε3 n2(1−γ) log2 n 2nγ log(1/ε) n2(1−γ)/ε

3 2log2(1/ε) 1 − ε ε2 log−3(1/ε) n log2 n n1/ε log2 n/ε2

Fig. 9.1. The parameters of our codes. n stands for the length of the code. For
readability, the O(·) and Ω(·) notation, and certain logO(1)(1/ε) factors have been
omitted. The value of γ is in the interval (0, 1]; its value influences the rate by a
constant factor. The decoding radius shows the fraction of errors which the decoding
algorithms can correct. .
∗A detailed discussion on the construction times is presented later in this Section.

Our first code (1) enables efficient list decodability from up to a fraction
(1− ε) of errors, for an arbitrary constant ε > 0. Its distinguishing feature is
the near-quadratic decoding time and fairly high (namely Ω(ε2)) rate, while
maintaining a constant alphabet size. The only other known constructible
codes with comparable parameters are certain families of algebraic-geometric
codes [190, 65]. As discussed in Chapter 6 (specifically in Theorem 6.45),
such AG-codes can achieve Ω(ε2) rate and O(1/ε4) alphabet size. While
they yield a much better alphabet size, AG-codes suffer from the drawback
of complicated construction and decoding algorithms. It is only known how
to list decode them in polynomial time using certain auxiliary advice (of
polynomial size), and it not known how to compute this information in sub-
exponential (randomized or deterministic) time (the reader might recall the

2Juxtaposed codes will be used again in the next chapter to obtain constructions
of good codes with very high list decodability from erasures. Codes similar to our
juxtaposition based constructions are also called multilevel concatenated codes in
the literature [46], but we believe the term juxtaposed codes is more natural and
we use this terminology.

212 9 New, Expander-Based List Decodable Codes

discussion about this in Chapter 6, Section 6.3.9). Even regarding construc-
tion complexity, only very recently [167] showed how to construct the gen-
erator matrix of the necessary AG-codes in near-cubic time. In comparison,
our construction time, although probabilistic, is essentially negligible.

The second code (2a) also enables list decodability up to a fraction (1−
ε) of errors. Its distinguishing feature is the optimal Ω(ε) rate. The only
previously known codes with such rate were purely random codes (even Reed-
Solomon codes that have super-constant alphabet size only guarantee Ω(ε2)
rate). However, the best known decoding time for random codes is 2O(n), and
it is likely that no significantly better algorithm exists. Our codes also have
significant random components; however, they can be decoded substantially
faster in sub-exponential time. The binary version (2b) of the aforementioned
codes, which correct up to a fraction (1/2− ε) of errors, also beat the Ω(ε4)
rate of best constructive codes from the previous chapter (specifically, the
result of Theorem 8.11). They are only off by a factor of O(ε) from the
optimal Ω(ε2) rate implied by the existential results of Chapter 5.

For the codes (3), the rate is not as good as the construction (1), but
one can get substantial improvements in alphabet size for a relatively small
worsening of the rate. For example, as listed in Figure 9.1, it can achieve a
rate of Ω(ε2 log−3(1/ε)) for an alphabet size of 2O(log2(1/ε)). By worsening
the rate further, it is even possible to achieve an alphabet size better than
O(1/ε4), which is the alphabet size of the best known AG-codes that are list
decodable up to a fraction (1− ε) of errors (see Theorem 9.25).

Construction times. All of our constructions use the probabilistic method
to obtain certain “gadgets” which are then used together with explicitly spec-
ified objects. The probabilistic method generates such building blocks with
high probability. Therefore, our probabilistic construction algorithms are ran-
domized Monte Carlo, and the claimed list decodability property holds with
high probability over the choice of the random components. We note, however,
that our probabilistic algorithms using R random bits can be derandomized
and converted into deterministic algorithms using O(R) space and running in
2O(R) time in a straightforward manner. (The resulting code will be guaran-
teed to have the claimed list decodability property, i.e., the derandomization
includes “verification” as well.) For the codes (1), a naive derandomization
would only give a quasi-polynomial time construction. Nevertheless, by using
the method of conditional expectations for derandomization, we will show the
code can be constructed deterministically in time nO(ε−1 log(1/ε)). Similarly,
for our constructions (2a,2b), a conditional expectations based derandom-
ization enables a deterministic construction in (roughly) 2O(n1−γ) time. Note
that the both the probabilistic and deterministic construction times of (2a,2b)
get worse as the decoding time gets better and better.

We stress that modulo the gadget construction, generating each symbol
of a codeword can be done in polylogarithmic time.

9.2 Overview of Results and Techniques 213

9.2.2 Our Techniques

Expander-Based Constructions At a high level, the codes (1), (2a,2b)
are all constructed using a similar scheme. The basic components of the con-
structions are: a “left” code (say, C) and a “dispersing” bipartite graph G,
and in the case of binary codes, a “right” binary code C′. The left code C
is typically a concatenation of efficient list decodable codes, namely Reed-
Solomon codes and certain good list decodable “pseudolinear” codes whose
existence we prove in Section 9.3. Such pseudolinear codes can either be
found by brute-force or, one can pick a code at random and thus get a much
faster probabilistic construction that works with high probability. The bi-
partite graph G has a weak form of expansion property, namely that the
neighborhood of every reasonable sized subset of the left side (say, consisting
of a fraction 1/2 of the left nodes) misses at most a fraction ε of the nodes
on the right. The technical term in the literature for such a graph is usually
disperser, though we find it convenient to use the umbrella term expander to
loosely refer to such graphs in the sequel.3

a

b

c

< a,b,c >

"Left" Code C

is the "juxtaposition"

Codeword of

(a suitable concatenated code)

Codeword of

Expander Graph G

1New Code C

Each symbol of C 1

of the symbols it receives

from its neighbors

on the left

Fig. 9.2. Basic structure of our code constructions. To get binary code construc-
tions, each symbol of C1 is further concatenated with a good, constant-sized binary
code.

3In Chapter 11, where we will also make use of expanders, we will use stronger
“pseudorandom” properties of expander graphs, and not just their dispersion prop-
erty.

214 9 New, Expander-Based List Decodable Codes

Given the above components, the codes are constructed as follows. For
each codeword x of C, we construct a new codeword y by distributing the
symbols of x from left to right according to the edges in G. The juxtaposition
of symbols “sent” to each right node of G forms a symbol of the codeword y
of the final code C1. The code C1 will thus be defined over a large alphabet.
See Figure 9.2 for a sketch of the basic construction scheme. For construction
(2b), in order to get a binary code, we add a final level of concatenation
with an appropriate binary code C′. This is similar to the construction due
to Alon et al in [6]. Our contribution is in the design of efficient decoding
algorithms to correct a large fraction of errors for such code constructions.

The role of the dispersing graph G is, roughly speaking, to convert an
arbitrary distribution of errors that could exist between the various blocks of
the (concatenated) left code C into a near-uniform distribution. This permits
recovery of a (somewhat corrupted) received word x for C from a heavily
corrupted received word y for the code C1, using a certain “voting” scheme.
The voting scheme we use is very simple: each position of y votes for all
positions of x which are connected to it by an edge of G. This allows us to
collect a list of potential symbols for each position of x. These lists are then
used by a suitable decoding algorithm for C to finish the decoding.

The specifics of the implementation of the above ideas depend on the
actual code construction. For the code (1), we take the left code C to be a
concatenation of a Reed-Solomon code and a suitable pseudolinear code. Such
a code can be list decoded in near-quadratic time using the Reed-Solomon de-
coding algorithms discussed in Chapter 6. The codes (2a,2b) are constructed
by picking C to be a concatenation of a constant number of levels of “pseu-
dolinear” codes with an outermost Reed-Solomon code (we call such codes
multi-concatenated codes). The pseudolinear codes can perform list decoding
when given as input a vector of lists, one per codeword position, such that at
least half of the lists contain the correct symbol. The important fact is that
such pseudolinear codes exist with a fixed constant rate that is independent
of the length of the lists that are involved. This allows the decoding algorithm
to propagate the candidate symbols through the concatenation levels while
decreasing the rate only by a small factor at each level. The parameters are
so picked that the decoding of each of these pseudolinear codes as well as the
overall code can be done in sub-exponential time.

Juxtaposed Code Constructions The second approach behind our code
constructions, which is used in Section 9.6, is aimed at obtaining similar (or
slightly worse) rates using smaller alphabet size, and is the basis of the con-
structions described in Section 9.6. In this approach, multiple Reed-Solomon
codes (of varying rates) are concatenated with several different inner codes
(of varying rate and list decodability). Corresponding to each Reed-Solomon
and inner code pair, we get one concatenated codeword, and the final encod-
ing of a message is obtained by “juxtaposing together” the symbols from the
various individual concatenated codewords.

9.3 Pseudolinear Codes: Existence Results and Properties 215

The purpose of using multiple concatenated codes is that depending on the
distribution of errors in the received word, the portions of it corresponding
to a significant fraction of a certain inner encoding (that depends on the
level of non-uniformity in the distribution of errors) will have relatively few
errors. These can then be decoded to provide useful information about a
large fraction of symbols to the decoder of the corresponding outer Reed-
Solomon code. Essentially, depending on how (non)-uniformly the errors are
distributed, a certain concatenated code “kicks in” and enables recovery of
the message. A conceptually similar idea was used by Albanese et al in their
work on Priority encoding transmission (PET) [3].

The use of multiple concatenated codes reduces the rate compared to the
expander-based constructions, but we gain in the alphabet size. For example,
for a near-quadratic (namely, Ω(ε2 log−O(1)(1/ε))) rate, the alphabet size can
be quasi-polynomial as opposed to exponential in 1/ε.

9.2.3 A Useful Definition

For our results, the following (more general) notion of good list decodability
proves extremely useful — for purposes of disambiguation from (e, �)-list
decodability, we call this notion “list recoverability”.

Definition 9.1. For α, 0 < α < 1, and integers L ≥ � ≥ 2, a q-ary code C
of blocklength n is said to be (α, �, L)-list recoverable if given arbitrary “lists”
Li ⊆ Fq of size at most � for each i, 1 ≤ i ≤ n, the number of codewords
c = 〈c1, . . . , cn〉 ∈ C such that ci ∈ Li for at least αn values of i, is at most L.

We will loosely refer to the task of decoding a code under the above model
as “list recovering” the code.

Remark: A code of blocklength n is (α, 1, L)-list recoverable if and only if
it is ((1− α)n, L)-list decodable.

9.3 Pseudolinear Codes: Existence Results and
Properties

In this section, we prove existence results using the probabilistic method for
codes which serve as inner codes in our concatenated code constructions.
The inner codes will be “pseudolinear codes” with appropriate parameters.
We now formally define the notion of “pseudolinear” code families and prove
some of the basic list decodability properties offered by random pseudolinear
codes. An informal description of pseudolinear codes was given in Chapter 2,
where we had put off a more detailed treatment to later when the machinery
is really used (which is in this chapter).

216 9 New, Expander-Based List Decodable Codes

The notion of pseudolinear codes plays a crucial role in translating list
decodability results for general, non-linear codes into similar results for codes,
which albeit not linear, still have a succinct description, and allow for efficient
encoding. In our applications, these pseudolinear codes, which are typically
used as inner codes in suitable concatenated schemes, are critical in getting
efficient constructions for our codes.

9.3.1 Pseudolinear (Code) Families

Informally, an L-wise independent code family is a sample space of codes such
that the encodings of any L non-zero messages are completely independent
for a random code drawn from the family. The formal definition follows.

Definition 9.2. An L-wise independent (n, k)q-code family F is a sample
space of codes that map k symbols over Fq to n symbols over Fq such that for
every set of L non-zero messages x1,x2, . . . ,xL ∈ Fk

q , the random variables
C(x1), C(x2), . . . , C(xL) are completely independent, for a code C picked uni-
formly at random from the family F .

A random code picked from an L-wise independent family often tends to
have very good list decoding properties for decoding with list size L, owing to
the mutual independence of any set of L (non-zero) codewords. An example
of an L-wise independent code family is the space of all general, non-linear
q-ary codes of blocklength n and dimension k, which is clearly L-wise inde-
pendent, for all L, 1 ≤ L < qk. While a random, non-linear code has excellent
randomness properties, it comes from a very large sample space and there
is no succinct representation of a general code from the family.4 We now
define a family of codes which we call pseudolinear that has the desired L-
wise independence property and in addition is succinct. Thus a random code
drawn this family has the desired randomness properties, can be succinctly
represented, and has an efficient encoding procedure.

Definition 9.3 (Pseudolinear Codes). For a prime power q, integer L ≥
1, and positive integers k, n with k ≤ n, an (n, k, L, q)-pseudolinear family
F(n, k, L, q) of codes is defined as follows. Let H be the parity check matrix
of any q-ary linear code of blocklength (qk − 1), minimum distance at least
(L+1) and dimension qk−1−O(kL) (for example, one can use parity check
matrices of q-ary BCH codes of designed distance (L + 1), cf. [10, Chap.
15]). A random code CA in the pseudolinear family F(n, k, L, q) is specified
by a random n × O(kL) matrix A over Fq. Under the code CA, a message
x ∈ Fk

q \ {0} is mapped to A ·Hx ∈ Fn
q where Hx ∈ F

O(kL)
q is the column of

4The space of random [n, k]q linear codes has the desired succinctness properties,
but however is in general not even 3-wise independent (it is 2-wise (or pairwise)
independent, though). This is because for any linear map E : [q]k → [q]n, we have
E(x + y) = E(x) + E(y) for every x, y ∈ [q]k.

9.3 Pseudolinear Codes: Existence Results and Properties 217

H indexed by x (viewed as an integer in the range [1, qk)). (We also define
H0 = 0 to be the all-zeroes vector.)

Given 1 ≤ x < qk, a description of the column Hx can be obtained in time
polynomial in k and log q, since there are explicit descriptions of the parity
check matrices of BCH codes of distance at least (L + 1) and blocklength
(qk − 1), in terms of the powers of the generating element of GF(qk) over
GF(q) (see, for example, [132, Chap. 9]). Hence encoding as per these codes
is an efficient operation. In addition to these complexity issues, the crucial
combinatorial property about these pseudolinear codes that we exploit is
that every set of L fixed non-zero codewords of the code CA, for a random
A, are completely independent. This is formalized in Lemma 9.4 below. Note
also that, unlike general non-linear codes, codes from a pseudolinear family
have a succinct representation, since they can be specified using the n ×
O(kL) “generator” matrix A and poly(k, log q) sized information about the
generating element of GF(qk) over GF(q).

Lemma 9.4. For every n, k, L, q, an (n, k, L, q)-pseudolinear family is an L-
wise independent (n, k)q family of codes.

Proof: Since H defines the parity check matrix of a code, say C, that has
distance at least (L+1), every set of L columns of H are linearly independent.
Indeed, suppose this were not the case. Then there must exist a linear de-
pendence α1Ha1 + . . .+αLHaL = 0 for integers 1 ≤ a1 < a2 < · · · < aL < qk

and αi ∈ Fq with not all αi = 0. This implies that the non-zero vector y
which has symbol αi at location ai for i = 1, 2, . . . , L and zeroes at all other
locations satisfies H · y = 0 and hence belongs to the code C. But the Ham-
ming weight of y is at most L, a contradiction to the fact that the distance
of C is at least (L + 1).

Now consider any L non-zero codewords corresponding to messages
a1, a2, . . . , aL where each ai ∈ [1, qk). They are encoded into the codewords
ci = A · Hai . Since the various Hai are linearly independent, for a random
matrix A, the various ci’s are completely independent. This follows from the
general fact that the images of a set S = {v1, . . . ,vL} of linearly indepen-
dent vectors in Fm

q , under a linear transformation defined by a random n×m
matrix A, are completely independent. This fact is easy to prove since the
vi’s, being linearly independent, can be mapped by an invertible linear map
into the standard basis vectors e1, e2, . . . , eL, and the mutual independence
of A · e1, A · e2, . . . , A · eL for a completely random A is obvious. �

Remark: We note here that one of the standard constructions of d-wise
independent binary random variables (say, X1, X2, . . . , Xn) uses arguments
similar to the above (cf. [10, Chap. 15], [107]). It also proceeds by the con-
struction of a set S ⊆ {0, 1}a, where a = O(d log n), consisting of n vectors
with the property that any subset of d vectors in S are linearly independent.
The set S is picked to be the columns of a parity check matrix of a binary

218 9 New, Expander-Based List Decodable Codes

code of blocklength n, dimension (n − a), and minimum distance at least
(d + 1). The random variable Xi is defined by picking a random vector in
{0, 1}a and taking its dot product with the i’th vector in S. The fact that
any d of the vectors in S are linearly independent translates into the d-wise
independence of the Xi’s. Using parity check matrices of appropriate BCH
codes, gives d-wise independent sample spaces of O(n�d/2�) size. This size is
in fact optimal, up to a constant factor, cf. [10, Chap. 15].

We next define the notion of an infinite family of (L, q)-pseudolinear codes
of increasing blocklength. Since we are interested in the asymptotic perfor-
mance of codes, we will be interested in such code families of a certain rate.

Definition 9.5. An infinite family of (L, q)-pseudolinear codes CL,q is ob-
tained by picking codes {CAi}i≥1 of blocklengths ni (with ni →∞ as i →∞)
where CAi belongs to the (ni, ki, L, q)-pseudolinear family.

9.3.2 Probabilistic Constructions of Good, List Decodable
Pseudolinear Codes

We now analyze the list decodability properties of random pseudolinear codes
and use it to prove the existence of pseudolinear codes with a certain trade-
off between rate and list decodability. We stress that all existential results of
this section are in fact “high probability results”; in other words, a random
pseudolinear code with appropriate parameters achieves the claimed rate and
list decodability properties with (1− o(1)) probability. We will use this fact
implicitly when we use the codes guaranteed by this section in later (proba-
bilistic) code constructions.

Lemma 9.6. For every prime power q ≥ 2, every integer �, 1 ≤ � ≤ q and
L ≥ �, and every α, 0 < α ≤ 1, there exists an infinite family of (L + 1, q)-
pseudolinear codes of rate r given by

r ≥ 1
lg q

min
{

α lg(q/�)−H(α) −H(�/q) · q

L + 1
, (9.1)

(
α lg(q/�)−H(α)

) · L + 1
L

−H(�/q) · q

L

}
− o(1) ,

such that every code in the family is (α, �, L)-list recoverable. (Recall that for
0 ≤ x ≤ 1, H(x) = −x lg x − (1 − x) lg(1 − x) denotes the binary entropy
function of x).

Proof: The proof follows by employing the probabilistic method. Let n be
large enough and r be as in the statement of the lemma. We will show that
a code C picked at random from an (n, rn, L + 1, q)-pseudolinear family is
(α, �, L)-list recoverable with high probability.

Let us estimate the probability that the code C is not (α, �, L)-list recov-
erable. Fix a choice of Li, 1 ≤ i ≤ n, where each Li is a subset of [q] of size

9.3 Pseudolinear Codes: Existence Results and Properties 219

�. We wish to bound from above the probability that for some set S ⊆ C of
size L + 1, the event ES that each codeword in S has some element from Li

in its i’th coordinate for at least αn values of i, occurs. We divide this event
into two cases: (i) when the set S does not contain the zero codeword, and
(ii) when the zero codeword belongs to S. In case (i), the probability of ES

is clearly at most ((
n

αn

)(�

q

)αn
)L+1

. (9.2)

For case (ii), the probability is 0 unless at least αn of the Li’s include 0, in
which case the probability is at most

((
n

αn

)(�

q

)αn
)L

. (9.3)

By a union bound, the probability that for some choice of Li’s, some bad
event ES happens is at most

(
q

�

)n

qrn(L+1)

((
n

αn

)(�

q

)αn
)L+1

+
(

n

αn

)(
q − 1
�− 1

)αn(
q

�

)n−αn

qrnL

((
n

αn

)(�

q

)αn
)L

which is at most(
q

�

)n(
qrn·2H(α)n2− lg(q/�)αn

)L+1

+
(

q

�

)n

·qrnL·2H(α)n(L+1)·2− lg(q/�)αn(L+1) .

The above quantity is easily seen to be o(1) for r as in Equation (9.1). Hence
there is a (1− o(1)) probability that the code C has the claimed list recover-
ability properties. �

Corollary 9.7. Let α > 1 be an arbitrary constant. Then there exist positive
constants aα, bα such that for every ε > 0, there exist q = O(1/ε2), L = aα/ε
and a family of (L, q)-pseudolinear codes of rate bα which is (α, 1/ε, L)-list
recoverable.

Proof: Follows by a straightforward substitution of � = 1/ε and q = O(1/ε2)
in the bound of Equation (9.1). �

We now obtain the following results for the “usual” notion of list decodability.

Lemma 9.8. For every prime power q ≥ 2, every p, 0 < p < 1, and every
integer L ≥ 2, there exists an infinite family CL,q of (L, q)-pseudolinear codes
of rate r given by

r ≥ 1−Hq(p)− 1
L
− o(1) ,

such that LDRL(CL,q) ≥ p.

220 9 New, Expander-Based List Decodable Codes

Proof: The proof follows by an application of the probabilistic method simi-
lar to that of Lemma 9.6. Let us pick a code C at random from an (n, rn, L, q)-
pseudolinear family where n is large enough and r is as in the statement of
the lemma. Let us estimate the probability that C is not (pn, L)-list decod-
able. In this case there must be some L non-zero codewords of C all of which
lie within a Hamming ball of radius pn. Since any L non-zero codewords of
C are mutually independent, the probability of this happening for a fixed
Hamming ball Bq(x, pn) is at most

(
qrn − 1

L

)
·
(qHq(p)n

qn

)L

since |Bq(x, pn)| ≤ qHq(p)n. The probability that this happens for some x ∈
[q]n is thus at most

qnqrnLq(Hq(p)−1)Ln

which is o(1) for r as in the statement of the lemma. Hence a random pseu-
dolinear code of rate r is (pn, L)-list decodable with high probability. �
Remark: It is possible to state a more complicated bound, similar to that of
Lemma 9.6, by analyzing separately the cases when the “bad” set of (L + 1)
codewords contains the zero codeword and when it doesn’t. For simplicity,
and since the above bound is all that we will need, we just stated and proved
that above. For Lemma 9.6, the more careful argument has the advantage of
showing that positive rate is possible even when L = � for large enough α,
which is why we stated the more complicated bound.

Corollary 9.9. Let a > 1 be an arbitrary constant. Then there exist con-
stants ba, ca > 1 such that for every ε > 0 the following holds: let q = O(1/εa)
and L = ba/ε. Then there exists a rate ε/ca family of (L, q)-pseudolinear
codes PLε which satisfies LDRL(PLε) ≥ 1− ε.

List Recoverability of Random Linear Codes We now state the ver-
sion of Lemma 9.6 that applies to random linear codes. This can be viewed
as the generalization of Theorem 5.6 (from Chapter 5), which analyzed the
list decodability of random linear codes, to the list recoverability situation.
The result for linear codes will be used in the multi-concatenated code con-
struction in Section 9.5 (specifically in the proof of Lemma 9.21).

Lemma 9.10. For every prime power q ≥ 2, every integer �, 1 ≤ � ≤ q and
L > �, and every α, 0 < α ≤ 1, there exists an infinite family of linear codes
of rate r given by

r ≥ 1
lg q

(
α lg(q/�)−H(α)−H(�/q) · q

logq(L + 1)

)
− o(1) , (9.4)

such that every code in the family is (α, �, L)-list recoverable.

9.3 Pseudolinear Codes: Existence Results and Properties 221

Proof: The proof follows along the lines of Lemma 9.6 by analyzing the per-
formance of a linear code defined by a random (n×rn) generator matrix over
Fq. If some set of (L + 1) codewords violate the (α, �, L)-list recoverability
property, then there must be at least logq(L + 1) non-zero codewords among
them that correspond to encodings of linearly independent messages in Frn

q .
It therefore suffices to prove an upper bound on the probability that some set
of logq(L+1) linearly independent messages are mapped into codewords that
violate the (α, �, logq(L+1))-list recoverability property. Since, for a random
linear code the codewords associated with a set of linearly independent mes-
sages are all mutually independent (cf. Lemma 9.4), the analysis of Lemma 9.6
goes through with logq(L + 1) taking the place of L + 1 in Equation (9.2).
The claimed bound then follows. �

Corollary 9.11. Let α ≤ 1 be an arbitrary constant. Then there exist positive
constants aα, cα such that for every ε > 0, there exist q = O(1/ε2), L =
qcα/ε and a family of q-ary linear codes of rate aα which is (α, 1/ε, L)-list
recoverable.

9.3.3 Derandomizing Constructions of Pseudolinear Codes

One straightforward way to “constructivize” or “derandomize” the probabilis-
tic result of Lemmas 9.6 and 9.8 is by a brute-force search over all codes in
an (n, k, L, q)-pseudolinear family. Note that checking whether a fixed (n, k)q

pseudolinear code has the necessary (α, �, L)-list recoverability or (pn, L)-list
decodability properties can be done by a search over all “received words” and
over all codewords in qO(�n+k) and qO(n) time, respectively. However, going
over all possible (n, k)q pseudolinear codes involves going over all n×O(kL)
“generator” matrices and this requires qO(knL) time. Hence a naive deran-
domization of the probabilistic constructions of (n, k)q pseudolinear codes
from the previous section will take qO(knL) time. This is prohibitive even for
the blocklengths for inner codes. For example, if we wish to use a pseudolin-
ear code as an inner code in a concatenation scheme with outer code being a
Reed-Solomon code over a polynomially large field, then the dimension of the
pseudolinear code will be logarithmic in the overall blocklength. The naive
derandomization will take quasi-polynomial time in such a case, while we
would clearly prefer a polynomial time deterministic construction. We next
demonstrate how one can find codes in a (n, k, L, q)-pseudolinear family with
the properties claimed in Lemmas 9.6 and 9.8 in qO(kL+n�) time. Applied to
the above-mentioned concatenated code setting, this will enable polynomial
time construction of the concatenated code, since �, L, q will be constants and
n, k will be logarithmic in the overall blocklength.

The basic idea is to derandomize the probabilistic constructions using
the method of conditional expectations. Since the method is quite standard,

222 9 New, Expander-Based List Decodable Codes

we only discuss informally how to apply it to our context.5 We focus on
Lemma 9.6, and the result for Lemma 9.8 is similar. To derandomize the
result of Lemma 9.6, we will successively find the n rows of a “good” n ×
O(kL) matrix A such that the associated code CA in the pseudolinear family
F(n, k, L, q) is (α, �, L)-list recoverable. (Here and in what follows k = rn is
the dimension of the code.)

Assume that for some 1 ≤ s ≤ n, the first (s − 1) rows of A have been
picked to be a1, . . . ,as−1 where each ai ∈ F

O(kL)
q . We pick as so that it

minimizes a certain conditional expectation by searching among all the qO(kL)

possible choices for as.
The relevant expectation that we bound is the following. For each (or-

dered) collection D of n “lists” Li ⊆ Fq with |Li| = � for each i, 1 ≤ i ≤ n,
each set of L (non-zero) codewords (given by a subset T = {x1, . . . , xL} ⊆ Fk

q

of size L) of the pseudolinear code, and each (ordered) collection S of L
subsets S1, . . . , SL ⊆ [n] with each |Sj | = αn, define an indicator random
variable I(S,D, T) as follows. I(S,D, T) equals 1 if, for each j, 1 ≤ j ≤ L,
the codeword corresponding to xj ∈ T agrees with an element of Li for each
of the αn values of i ∈ Sj . Otherwise, I(S,D, T) = 0. In words, I(S,D, T) = 1
iff the setting S, D, T shows a “counterexample” to the code that we con-
struct being (α, �, L)-list recoverable (and is thus a “bad” event that we wish
to avoid).

The random variable we consider in order to apply the method of condi-
tional expectations is

X(α, �, L) =
∑

S,D,T

I(S,D, T) . (9.5)

We will exploit linearity of expectation to compute the conditional expec-
tations of X(α, �, L). The initial expectation of each I(S,D, T) (taken over
the random choice of all rows ri of A, where 1 ≤ i ≤ n) clearly equals

(
�
q

)αnL

since the events for the various codewords in T are independent (by the L-
wise independence property of the code). Multiplying this by the number of
choices of S,D, T , we get (as in the proof of Lemma 9.6) that the initial ex-
pectation of X(α, �, L) is exponentially small (and in particular there exists a
code with X(α, �, L) = 0, or in other words which is (α, �, L)-list recoverable).

Once we condition on the first s rows of A being fixed to, say, a1, . . . ,as,
the expected value of I(S,D, T) taken over the random choices of the re-
maining (n− s) rows r1, . . . , rn−s can still be exactly computed. Indeed, the
first s coordinates of each of the codewords corresponding to each xj ∈ T , for
1 ≤ j ≤ L, are now fixed, and one can compute for each of them the number
of coordinates in Sj ∩ {1, 2, . . . , s} for which the codeword agrees with an
element from the associate list Li. Thus, for each xj , we can exactly compute

5The reader can find a discussion of the method of conditional expectations, for
example, in [10, Chap. 15].

9.3 Pseudolinear Codes: Existence Results and Properties 223

the probability that the associated codeword will agree with an element from
Li for each i ∈ Sj when the remaining rows are picked at random. By the
L-wise independence property, we can then simply multiply the probabilities
for the various xj ’s to estimate the conditional expectation of I(S,D, T).
We can do so for each of

(
n

αn

)L · (q
�

)n · (qk−1
L

)
choices of (S,D, T), and then

add up all these expectations to exactly compute the conditional expectation
of X . This is of course sufficient to make the best choice for as, given that
a1, . . . ,as−1 have already been picked. Once we pick ai, for 1 ≤ i ≤ n, we
have the required pseudolinear code that satisfies the property of Lemma 9.6.

Applying the above to the case q = O(1/ε2), � = 1/ε and L = O(1/ε), one
can thus prove the following lemma, which is one of the main results we need
for our later constructions. This is the “constructive” version of Corollary 9.7.
The alphabet size q can actually be made O(1/εc) for any c > 1, but since this
will not be important to us, we state the result for an alphabet size which is at
least Ω(1/ε2). The claims about the representation size and encoding follow
since any member of an (n, k, L, q)-pseudolinear family can be represented by
an n × O(kL) matrix over Fq and encoding involves multiplying a vector in
F

O(kL)
q with this matrix. The lower bound claimed on the rate follows from

Equation (9.1) after a simple calculation.

Lemma 9.12. For every α, 0 < α < 1, and for all large enough constants
c > 1, there exists a positive constant aα ≥ 1

3 (α− 1/c) such that for all small
enough ε > 0 the following holds. For all prime powers q = Ω(1/ε2), there
exist L = c/ε and a family PL(1)

ε of (L, q)-pseudolinear codes of rate aα, such
that a code of blocklength n in the family has the following properties:

(a) it is (α, 1/ε, L)-list recoverable,
(b) it is constructible in deterministic time qO(nε−1) = 2O(nε−1 log q) or with

high probability in randomized O(n2ε−1 log q) time (i.e., the constructed
code will have the list recoverability property claimed in (a) with high
probability), and

(c) it can can be represented in O(n2ε−1 log q) space, and encoded using
O(n2ε−2) operations over Fq.

We also get the following constructive version of Corollary 9.9 by applying
the same derandomization procedure.

Lemma 9.13. Let a > 1 be an arbitrary constant. Then there exist constants
ba, ca > 1 such that for every ε > 0 the following holds. For all prime powers
q = Ω(1/εa), there exist L = ba/ε and a family PL(2)

ε of (L, q)-pseudolinear
codes of rate at least ε/ca, such that a code of blocklength n in the family has
the following properties:

224 9 New, Expander-Based List Decodable Codes

(a) it is ((1− ε)n, L)-list decodable.
(b) it is constructible in deterministic time qO(n) = 2O(n log q), or with high

probability in randomized O(n2 log q) time, and
(c) it can can be represented in O(n2ε−1 log q) space, and encoded using

O(n2ε−2) field operations over Fq.

A similar result for linear codes. We now state a result analogous to
Lemma 9.12 for the case of linear codes.

Lemma 9.14. For every constant α, 0 < α < 1, and for all large enough
constants c > 1, there exists a positive constant aα ≥ 1

3 (α−1/c) such that for
all small enough ε > 0 the following holds. For all prime powers q = Ω(1/ε2),
there exists a family of q-ary linear codes of rate aα, such that a code of
blocklength n in the family has the following properties:

(a) it is (α, 1/ε, qc/ε)-list recoverable,
(b) it is constructible in deterministic time qO(nε−1), or with high probability

in randomized O(n2 log q) time, and
(c) it can can be represented in O(n2 log q) space, and encoded using in

O(n2) operations over Fq.

Proof: The claimed parameters follow by substituting � = 1/ε, q = Ω(1/ε2),
and L = qc/ε in Lemma 9.10. Note that since the code is linear, it can be
represented using its generator matrix, which takes O(n2) entries in Fq. The
only non-trivial thing to check is the claimed deterministic construction time.
A naive derandomization will involve trying out all (n× aαn) generator ma-
trices, and this will take qO(n2) time (the verification of the list recoverability
property can be done in qO(nε−1) time). However, as in the case of pseudo-
linear codes, one can use the method of conditional expectations to get a
faster derandomization of the probabilistic construction of Lemma 9.10. This
will involve picking the n rows of the generator matrix in sequence, each time
searching for the best row from Faαn

q that minimizes a certain conditional ex-
pectation. The relevant conditional expectations can be computed in qO(nε−1)

time. Hence, the total time required to find a generator matrix that defines a
code with the required properties is qO(nε−1). We omit the details which are
very similar to the derandomization of the pseudolinear case. �

Remark concerning alphabet size. Even though the above results are
stated for code families over a fixed constant-sized alphabet, a variant of it
holds equally well also for alphabet size that grows with the length of the code
(in some sense the large alphabet only “helps” these results; note also that
the statements of Lemmas 9.12, 9.13, and 9.14 only pose lower bounds on
q). This fact is later exploited in our multi-concatenated code constructions
from Section 9.5, where we shall make use of such codes for q which is of
the form 2np

for some integer p (n being the blocklength of the code). It

9.3 Pseudolinear Codes: Existence Results and Properties 225

is also used in the next section where we show how pseudolinear codes over
such large alphabets can be decoded in time significantly better than a brute-
force search over all codewords. It is in fact this construction that is used in
Section 9.5.

Remark concerning “density” of the codes in the families. Since
the existence results claimed in the previous several lemmas are proved by a
straightforward application of the probabilistic method, it follows that there
exist such codes with any (large enough) dimension one seeks (and the prop-
erties such as rate and list decodability stay as claimed in the lemmas). We
do not explicitly state this fact in the results, but the result of the next sec-
tion is conveniently stated by fixing the dimension, and hence we explicitly
state that it achieves any desired dimension for the codes it constructs. In
its proof, as well as in other proofs, we will implicitly use that this fact also
holds for the codes from the several previous lemmas.

9.3.4 Faster Decoding of Pseudolinear Codes over Large
Alphabets

The naive algorithm to (α, 1/ε, O(1/ε))-list recover the pseudolinear codes
from Lemma 9.12 is to simply run over all the qO(n) codewords and output
only those which satisfy the list recoverability requirement. This takes qΩ(n)

time. In Section 9.5, we will use pseudolinear codes over large alphabets
(exponential in the blocklength) in a multi-concatenated scheme, in a hope
of getting sub-exponential decoding algorithms for the final code that we
construct. But the qΩ(n) runtime for the decoding is prohibitive for such an
application due to the huge value of q.

We now present a code construction that combines pseudolinear codes
along with a “parallel” encoding by a linear code to improve the decoding
time for codes over very large alphabets. For want of a better term, we refer
to these codes as “large alphabet pseudolinear codes”. Each symbol of the
final encoding will be the “juxtaposition” of the symbols corresponding to the
linear and pseudolinear encodings. The linear component of the encoding will
be list recoverable in much faster time than the pseudolinear code. The exact
details appear in Lemma 9.15 below. The codes constructed below will be the
ones that are used in Section 9.5. The technique of symbol juxtaposition used
here will be again used in Section 9.6 of this chapter, and in the next chapter
on list decodable erasure codes. We believe that just like pseudolinear codes,
it is also an important code design tool to take home from this chapter.

Lemma 9.15. For every constant α, 0 < α < 1, and all sufficiently large
constants c > 1, there exists a constant bα ≤ 6

(
α− 1/c

)−1 such that ∀ ε > 0
there exists q = O(1/ε2) for which the following holds. For all integers m, s,
there exists a code of dimension m and blocklength at most bαm over GF(q2s)
with the following properties:

226 9 New, Expander-Based List Decodable Codes

(i) It is (α, 1/ε, c/ε)-list recoverable in O(s3(1/ε)O(m)) time.
(ii) It is constructible deterministically in qO(smε−1) = 2O(smε−1 log q) time. A

probabilistic construction that has the claimed list recoverability property
with high probability can be found in O(m2(sε−1 + s2) log q) time. The
code can be encoded in O(m2s2 log2 q) time.

Proof: Let ε > 0 be given, and let q = O(1/ε2) be a power of two. By
Lemma 9.12, we know that for every α and all large enough c, there ex-
ists a pseudolinear code over GF(qs), say C1, of dimension 2m, blocklength
bαm such that C1 is (α, 1/ε, c/ε)-list recoverable and is constructible in
2O(msε−1 log q) deterministic time or in O(m2sε−1 log q) probabilistic time.
Note that we may assume that bα ≤ 6(α− 1/c)−1 since the rate of the codes
guaranteed by Lemma 9.12 is at least 1

3 (α− 1/c).
The only known list recovering algorithm for such a pseudolinear code

is to perform a brute-force search over all (qs)2m possible codewords, which
takes (1/ε)O(ms) time. In order to speed up the algorithm, we perform an
encoding with a suitable random linear code in parallel — each symbol of
the final encoding will be the “juxtaposition” of the symbols corresponding
to the linear and pseudolinear encodings. The linear code, say Clin, will be
a q-ary code of dimension 2ms and blocklength bαms which is (α, 1/ε, qc/ε)-
list recoverable. By the result of Lemma 9.14, such a linear code exists and
can be constructed deterministically in qO(msε−1) time, or probabilistically
in O(m2s2 log q) time.

By “aggregating” each set of successive s symbols in both the message
and its encoding by Clin, we can view Clin as a code over GF(qs). Viewed this
way, Clin will map 2m symbols over GF(qs) into bαm symbols over GF(qs).
To avoid confusion, let us denote the code Clin viewed as a code over GF(qs)
by C̃lin.6

We now claim that the resulting code C̃lin is (α, 1/ε, qc/ε)-list recoverable
in

O((1/ε)O(m)m3s3 logO(1) q) = O(s3(1/ε)O(m))

time. The combinatorial list recoverability property itself follows since Clin is
(α, 1/ε, qc/ε)-list recoverable as a code over GF(q), and the property therefore
definitely holds for the code C̃lin obtained by viewing Clin as a code over
GF(qs). To prove the claim about the time complexity for list recovering
C̃lin, we present the following algorithm. The algorithm is simply to try out
all possible subsets S of αbαm positions and for each such choice go over all
possible sets T of (1/ε)O(m) symbols from the input lists. For each such choice
of S and T , we find if any codeword of Clin is consistent with these symbols
(this is simply an erasure decoding of the linear code). This can be done by
solving a linear system over GF(q) and takes at most O((2ms)3 logO(1) q)

6The code C̃lin will not in general be linear over GF(qs), but we will only use
linearity of Clin over GF(q).

9.4 The Basic Expander-Based Construction of List Decodable Codes 227

time since the blocklength of Clin equals 2ms. Since Clin is (α, 1/ε, qc/ε)-
list recoverable, it is definitely true that the number of codewords of Clin

consistent with a certain choice of symbols in a fraction α of the positions is
at most qc/ε. Finally, we will have to check which of the codewords of Clin

actually yield codewords of C̃lin that meet the required list recoverability
condition. Since each erasure decoding yields at most qc/ε solutions to check,
the total runtime will be the number of choices of S, T multiplied by the time
for each erasure decoding of Clin, plus an additional time of roughly O(qc/ε)
to prune the list returned by the erasure decoding of Clin . This gives the
claimed O((1/ε)O(m)s3) runtime.

We now define our final code C∗ to be the juxtaposition of C1 and C̃lin;
i.e. to encode a message according to C∗, we encode it using C1 and C̃lin in-
dependently to get two strings, say, 〈a1, a2, . . . , at〉 and 〈b1, b2, . . . , bt〉, where
t = bαm and each ai, bi ∈ GF(qs). The encoding of that message as per C∗

will then be 〈c1, . . . , ct〉, where each ci = (ai, bi) is viewed as an element of
GF(q2s). Note that C∗ defined this way encodes 2m symbols over GF(qs)
into bαm symbols over GF(q2s). We may equivalently view C∗ as mapping
m symbols over GF(q2s) into bαm symbols over GF(q2s). In other words C∗

has dimension m and blocklength bαm as a q2s-ary code.
Since C1 is (α, 1/ε, c/ε)-list recoverable, so is C∗ (as would any juxta-

posed code that involves C1). This gives the combinatorial list recoverability
property of C∗. To obtain the claim about the algorithmic list recoverabil-
ity, we will use the “linear” component C̃lin of C∗. By the above argument,
C̃lin can be (α, 1/ε, qc/ε)-list recovered within the claimed runtime. One can
then run through the at most qO(1/ε) messages output by this algorithm and
“cross-check” if its encoding by the pseudolinear code C1 agrees with the
respective component of the symbols in the input lists on a fraction α of the
positions. By the combinatorial list recoverability property of C1, at most
c/ε of the messages will pass this check. These will be the messages output
by the algorithm. The running time of this procedure is dominated by that
of the list recovering algorithm for C̃lin, and is thus O((1/ε)O(m)s3).

The encoding time for C∗ is dominated by the time to encode the “lin-
ear” component. Since the code Clin has both dimension and blocklength at
most O(ms), the encoding of Clin takes at most O((ms)2 log2 q) time. This
completes the proof of the lemma. �

9.4 The Basic Expander-Based Construction of List
Decodable Codes

For the construction in this section, we will use families of graphs with a
small bounded degree which nevertheless have strong connectivity properties.
Specifically, they will have the “dispersing” property that the neighborhood
of any large enough subset of vertices misses a very small fraction of vertices.
We mention here that code constructions in Chapter 11 are obtained using

228 9 New, Expander-Based List Decodable Codes

similar techniques and also use expander graphs, but there we will make use
of stronger properties than the above dispersion property — namely we will
use certain isoperimetric properties offered by expander graphs (which will
be discussed in 11.2). We next define the specific expansion property we need
for the results of this chapter.

9.4.1 Definition of Required “Expanders”

Definition 9.16. For integers N, d ≥ 1 and 0 < ε, α < 1, an (N, d, α, ε)-
disperser is a d-regular N × N bipartite graph H = (A, B, E) (where A, B
with |A| = |B| = N are the two sets in the bipartition and E is the edge set),
with the property that given any subset X ⊆ B with |X | ≥ ε|B|, the number
of vertices in A with some neighbor in X is at least α|A|.

Disperser graphs were first defined by Sipser [170] and since then there
has been a wide body of work on the properties and explicit constructions
of dispersers (cf. the survey by Nisan [148]). The following result on the
existence of disperser graphs is well known, see for instance [10, Chap. 9]
(and also Section 11.2 of this book) where an explicit construction using the
Ramanujan graphs of [131] is discussed.

Fact 9.17 There is a constant c such that for every ε > 0 and for infinitely
many n, there exists an explicitly constructible (n, c/ε, 1/2, ε)-disperser.

Of course the 1/2 in the above claim can be changed to any fixed constant
α < 1. In such a case, the constant c in the degree will depend on α.

9.4.2 Reduction of List Decoding to List Recoverability Using
Dispersers

We now present an elegant and simple reduction of the problem of construct-
ing codes which are efficiently ((1 − ε)n, L)-list decodable to the problem of
constructing codes with efficient (α, O(1/ε), L)-list recoverability, for some
fixed constant α, say α = 1/2. This idea is at the heart of all our expander-
based code constructions that we present in this chapter. It is instructive to
point out that the use of the expanders in our constructions is confined to
this reduction, and the construction of good list recoverable codes itself is
accomplished using other techniques.

The reduction is accomplished by redistributing the symbols of the code-
words of a list recoverable code, say C1, using a expander H , and thus define
the codewords of a new code C2 over a larger alphabet. The list recoverability
property of C1, together with the dispersion property of H , will imply the
good list decodability of C2. Given a corrupted received word r of C2, one
can push the symbols of r along the edges of the bipartite graph H to obtain
a list of possible symbols for each position of C1. The dispersion property

9.4 The Basic Expander-Based Construction of List Decodable Codes 229

of H will imply that at least a fraction 1/2 of these lists contain the correct
symbol of the codeword of C1. Now, the list recoverability property of C1

can be used to complete the decoding. The formal statement of the reduction
and the proof follow.

Proposition 9.18. There exists an absolute constant c such that for every
ε > 0 the following holds. Suppose there exists a q-ary code C1 of blocklength n
and rate r that is (1/2, c/ε, L)-list recoverable by an algorithm running in time
O(T (n)). Further assume that n is such that there exists an (n, c/ε, 1/2, ε)-
disperser. Then there exists a code C2, which is explicitly specified given C1,
and which has the following properties:

(i) It has blocklength n and rate εr/c.
(ii) It is defined over an alphabet of size qc/ε.
(iii) It is ((1−ε)n, L)-list decodable, and moreover there is an algorithm to list

decode C2 up to a fraction (1− ε) of errors in time O(T (n)+ n log q/ε).

Proof: The code C2 is obtained by distributing the symbols of codewords in
C1 using the edges of an (n, Δ, 1/2, ε)-disperser where Δ = c/ε. This is in a
manner similar to Alon et al [6], who used such a symbol redistribution for the
purpose of getting codes with a large (viz., (1−ε)) relative distance. Formally,
let H = ([n], [n], E) be an (n, Δ, 1/2, ε)-disperser. For 1 ≤ j ≤ Δ and 1 ≤ i ≤
n, denote by Γj(i) the j’th neighbor (on the left side) of the i’th vertex on the
right side of H (we assume some fixed ordering of the neighbors of each node).
A codeword (c1, c2, . . . , cn) of C1 is mapped into a codeword (c̃1, . . . , c̃n) of
C2, where each c̃i ∈ [q]Δ is given by c̃i = 〈cΓ1(i), . . . , cΓΔ(i)〉. The claim about
the blocklength, rate and alphabet size of C2 follow immediately.

The algorithm for list decoding C2 up to a radius of (1− ε)n proceeds in
two steps. Assume r is a received word and the goal is to find all codewords
of C2 that are within a Hamming distance of (1−ε)n from r. In other words,
the goal is to find every message x that satisfies Δ(C2(x), r) ≤ (1 − ε)n. In
the first step of the decoding, each position of the received word r “votes”
on those positions of the corresponding codeword in C1 which are adjacent
to it in the disperser H . This gives for each i, 1 ≤ i ≤ n, a list Li of at
most Δ = c/ε elements from [q] for each position of the code C1. See the
illustration in Figure 9.3. In the second step, the (1/2, c/ε, L)-list recovering
algorithm for C1 is run with these lists Li, 1 ≤ i ≤ n, as input. Finally, for
each message output by the list decoder for C1, we check if its encoding under
C2 agrees with r in at least εn positions, and if so, we output it.

The time required for the above algorithm is the time for the first “voting”
stage, which takes O(n log q/ε) time, followed by the time for list recovering
C1, which takes O(T (n)) time by hypothesis.

It remains to prove the correctness of the algorithm. Let x be any message
such that Δ(C2(x), r) ≤ (1− ε)n. Let X ⊆ [n] be the set of positions where
C2(x) and r agree. By hypothesis |X | ≥ εn. Define Y ⊆ [n] to be the set of
vertices on the left side of H which have a neighbor in X on the right. By

230 9 New, Expander-Based List Decodable Codes

a, b, c

a

b

c

Expander graph

a, e, c

e

Received word

for C
2

Each position of C
receives list of symbols
from its neighboring
positions of C 2

1

Fig. 9.3. Illustration of the decoding algorithm. Each position on the left collects
a list of symbols from all its neighbors on the right. These lists are then used as
input to the list recovering algorithm for the left code C1. The dispersion property
implies that even if the received word for C2 had several errors, a good fraction of
the lists obtained for C1 contain the correct symbol.

the dispersion property of H , |Y | ≥ n/2. Now, clearly for each i ∈ Y , the i’th
symbol of C1(x) is included in the list Li (since all votes coming from the
positions in X are correct, and the symbols in Y are precisely those which
receive at least one vote from the positions in X). Therefore, the message x
will be included in the list output by the (1/2, c/ε, L)-list recovering algorithm
for C1, when it is run with the lists Li as input. Hence, the above algorithm
will successfully include x in the final list it outputs. �

The following states a more general form of the above proposition which
states a stronger list recoverability property for C2 using that of C1. The
proof is identical to the above — at the voting stage of decoding, instead
of each position of C2 passing one vote to each of its neighbors, it passes
� votes where � is the number of possible symbols listed for that position.
Proposition 9.18 follows with the setting � = 1.

Lemma 9.19. There exists an absolute constant c such that for every ε > 0
the following holds. Suppose there exists a q-ary code C1 of blocklength n and
rate r that is (1/2, c�/ε, L)-list recoverable by an algorithm running in time

9.4 The Basic Expander-Based Construction of List Decodable Codes 231

O(T (n)). Further assume that n is such that there exists an (n, c/ε, 1/2, ε)-
disperser. Then there is a code C2, which is explicitly specified given C1, with
the following properties:

(i) It has blocklength n and rate εr/c.
(ii) It is defined over an alphabet of size qc/ε.
(iii) It is (ε, �, L)-list recoverable, and moreover there is an algorithm to

(ε, �, L)-list recover C2 in time O(T (n) + n� log q/ε).

9.4.3 Codes of Rate Ω(ε2) List Decodable to a Fraction (1 − ε) of
Errors

We now present our code construction (number 1) which has rate ε2 and is
list decodable in near-quadratic time from up to a fraction (1− ε) of errors.
The formal result is stated in Theorem 9.20.

Before we state and prove this result, we would like to point out one
technical point concerning the constructions. Recall the overall structure of
all our constructions (Figure 9.2): they use a certain “left code” C and then
redistribute symbols of a codeword of C using an expander. There is an
implicit assumption here that each side of the bipartite expander has the same
number of vertices, say n, as the blocklength of C. The known constructions
of Ramanujan graphs (eg. [131, 136]) work for infinitely many values of n,
but not for all sufficiently large n (as would be ideal for our application).
However, as discussed in [175, Section 2.4.1], these constructions give a dense
sequence of graphs, i.e., the sequence of number of vertices {nl}l≥1 for which
the constructions work satisfies ni+1−ni = o(ni) for sufficiently large i. As a
consequence, Spielman [175] proves that it is possible to get expander graphs
of every size with only a moderate loss in expansion, and uses this fact in
his constructions of expander codes. The same argument will also work for
us. Alternatively, since the sequence of graphs is dense, we can pad each
codeword of the left code with a small number of additional 0’s so that its
blocklength exactly matches the number of vertices in an explicit Ramanujan
graph construction, and then apply our construction. This “padding” will
affect the relative distance, rate and list decoding radius of the left code
only by a negligible amount, and will essentially have no impact on any of
the bounds we claim for the overall code construction. Therefore, in order
to keep things simple, in our constructions of this chapter, as well as those
in Chapter 11, we will ignore the above issue and simply assume that the
blocklength of our “left code” and the number of vertices in the “expander”
graph match exactly.

Theorem 9.20. For all ε > 0, there exists a code family with the following
properties:

(i) (Rate and alphabet size) It has rate Ω(ε2) and is defined over an alphabet
of size 2O(ε−1 log(1/ε)).

232 9 New, Expander-Based List Decodable Codes

(ii) (Constructibility) A description of a code of blocklength N in the family
can be constructed in deterministic NO(ε−1) time. A randomized Monte
Carlo construction that has the list decodability claimed in (iii) with high
probability can be obtained in probabilistic O(log2 Nε−1 log(1/ε)) time.

(iii) (List decodability) A code of blocklength N in the family can be list de-
coded from up to (1− ε)N errors in O(N2ε−O(1) log N) time using lists
of size O(1/ε).

Proof: The basic idea is to first construct a code C with good list recover-
ability properties by concatenating a Reed-Solomon code CRS of rate Ω(ε)
with a constant rate inner code Cin as guaranteed in Lemma 9.12. We will
then apply the construction of Proposition 9.18 to obtain a code list decod-
able up to a fraction (1−ε) of errors. Since the rate of the concatenated code
is Θ(ε), and applying Proposition 9.18 incurs a further ε factor loss in the
rate, we will get an overall rate of Ω(ε2). The formal details follow. The basic
structure of the construction is depicted in Figure 9.4.

RS

Message

(rate eps)

encoding

Pseudolinear
encodings

(constant rate)

Expander
(degree 1/eps)

(Reed−Solomon concatenated

with pseudolinear codes)

List recoverable code

C of rate epsRS−in

Final encoding

large alphabet)

(rate eps^2 over

Fig. 9.4. Basic structure of code construction that achieves rate Ω(ε2) and list
decoding radius (1 − ε). The list recoverability of the concatenated code CRS−in,
together with the expander, implies list decodability of the final code from a fraction
(1 − ε) of errors.

Let m be any sufficiently large integer. Let q0 = O(1/ε2) be a power of 2,
and let F be a field of cardinality qm

0 . Let n0 be in the range qm−1
0 ≤ n0 ≤ qm

0 ,
k0 = Θ(εn0), and CRS be the Reed-Solomon code over F of blocklength n0

and dimension k0 (so CRS has rate Θ(ε)). Let Cin be a pseudolinear code

9.4 The Basic Expander-Based Construction of List Decodable Codes 233

over Fq0 that maps m symbols over Fq0 (or, alternatively, a symbol of F)
into n1 = O(m) symbols over Fq0 , and further is (1/4, O(1/ε), O(1/ε))-list
recoverable. Such a code Cin exists by Lemma 9.12.

Define CRS−in to be the code obtained by concatenating CRS as outer code
with Cin as inner code. CRS−in is a code of blocklength N = n0 ·n1 = O(mqm

0)
and rate Ω(ε) over Fq0 . The codewords in CRS−in can be divided into n0

blocks of n1 symbols each, corresponding to the encodings of the n0 outer
Reed-Solomon codeword symbols.

The final code C∗ will be obtained from CRS−in using the construction of
Proposition 9.18 (i.e., by redistributing the symbols of a codeword of CRS−in

using an (N, O(1/ε), 1/2, ε)-disperser). It is readily checked that C∗, thus
defined, is a code of blocklength N and rate Ω(ε2) over an alphabet of size
q

O(1/ε)
0 = 2O(ε−1 log(1/ε)), proving Part (i) of the claim of the theorem.

The significant component in constructing C∗ is finding the inner code
Cin with the properties guaranteed in Lemma 9.12. Thus C∗ can be con-
structed deterministically in O(qO(mε−1)

0) = NO(ε−1) time, or probabilisti-
cally in O(m2ε−1 log q0) = O(log2 Nε−1 log(1/ε)) time, as claimed in Part
(ii) of the theorem statement.

It remains to prove the claim about the list decodability of C∗. For this,
it suffices to prove that CRS−in is (1/2, O(1/ε), O(1/ε))-list recoverable in
O(N2) time, since then the claim about list decoding C∗ from a fraction (1−ε)
of errors will follow from the properties of C∗ guaranteed by Proposition 9.18.

Suppose we are given lists Li each consisting of at most O(1/ε) elements
of Fq0 , for 1 ≤ i ≤ N . We will present an O(N2ε−O(1) log N) time algorithm
to find all codewords 〈d1, d2, . . . , dN 〉 of CRS−in which satisfy di ∈ Li for
at least N/2 values of i, 1 ≤ i ≤ N . Recalling that a codeword in CRS−in

comprises of n0 blocks of n1 symbols each, the lists Li can be viewed as
lists L′

j,s for the possible symbols in position s of the codeword of Cin that
encodes the j’th symbol of the Reed-Solomon codeword, for 1 ≤ s ≤ n1 and
1 ≤ j ≤ n0. Now consider the following list recovering procedure for CRS−in.
In the first step, the n0 inner codes are decoded by brute-force by going over
all codewords — namely, for each j, 1 ≤ j ≤ n0, one produces a list L̂j of all
elements of F whose encoding as per Cin contains an element from L′

j,s for
at least a fraction 1/4 of the values of s. By the list recoverability property
of Cin we have |L̂j | = O(1/ε) for each j, 1 ≤ j ≤ n0. Note that all the inner
decodings can be performed in O(n2

0/ε) time.
In the second step of the decoding, we run the list recovering algorithm

for Reed-Solomon codes implied by the result of Theorem 6.21, to find a
list L consisting of all messages x whose Reed-Solomon encoding contains
an element of L̂j for at least n0/4 values of j, 1 ≤ j ≤ n0. Specifically, we
apply the result of Theorem 6.21 with the choice n = n0, k = k0 = O(εn0),
� ≤ maxj |L̂j | = O(1/ε), and α = 1/4 (one can check that the condition
α >

√
2k�/n can be met for these values, with suitable constants in the big-

234 9 New, Expander-Based List Decodable Codes

Oh notation). The decoding returns lists of size O(
√

n0
εk0

) = O(1/ε), and can

certainly be performed in O(n2
0ε

−O(1) log3(qm
0)) = O(n2

0ε
−O(1) log3 n0) time.

Since n0 = O(N/ logq0
N), the time for list recovering the Reed-Solomon code

is O(N2ε−O(1) log N).
The final step prunes the list output by the Reed-Solomon decoder to in-

clude only those messages whose encodings as per CRS−in contain an element
of Li for at least N/2 values of i, and then outputs this pruned list. The
overall decoding time is dominated by the Reed-Solomon decoding time and
is O(N2ε−O(1) log N).

We now argue the correctness of the list recovering procedure. Let x be a
message whose encoding C∗(x) = 〈d1, d2, . . . , dN 〉, where di ∈ Li for at least
N/2 values of i. The codeword 〈d1, d2, . . . , dN 〉 can also be viewed as consist-
ing of symbols bj,s for 1 ≤ j ≤ n0 and 1 ≤ s ≤ n1, where 〈bj,1, bj,2, . . . , bj,s〉
is the block of the codeword corresponding to the inner encoding of the j’th
symbol of CRS(x). Let J ⊆ [n0] be the set of all j, 1 ≤ j ≤ n0, for which
bj,s belongs to the corresponding list L′

j,s for at least a fraction 1/4 of val-
ues of s in the range 1 ≤ s ≤ n1. If di ∈ Li for at least n0n1/2 values
of i, by a simple averaging argument we get that |J | ≥ n0/4. Now, by the
(1/4, O(1/ε), O(1/ε))-list recoverability property of Cin, for each j ∈ J , the
list L̂j contains the correct symbol of the Reed-Solomon encoding of the
concerned message x. Since |J | ≥ n0/4, the condition under which the Reed-
Solomon list decoder outputs a message is satisfied by x, and therefore it
will output x. Hence the message x will be included in the list output by the
algorithm, as we desired to show. �

9.4.4 Better Rate with Sub-exponential Decoding

In the proof of Theorem 9.20, we used an outer Reed-Solomon code over
a field of size linear in the blocklength. This implied that the dimension
of the inner pseudolinear code was at most log N , enabling a deterministic
polynomial time algorithm to find the necessary pseudolinear code. We now
indicate how at the cost of sub-exponential (about 2O(

√
N)) construction and

decoding time, we can improve the rate of the construction of Theorem 9.20
from Ω(ε2) to Ω(ε), which is optimal up to constant factors. We will keep
the discussion informal since in the next section we will generalize this result
and state formal theorems anyway.

The idea is to perform the same construction as in Theorem 9.20, except
we use Reed-Solomon codes of constant (independent of ε) rate, blocklength√

n, over an alphabet of size q
√

n
0 where q0 = O(1/ε2). For the inner code, we

use a constant rate (1/4, O(1/ε), O(1/ε))-list recoverable pseudolinear code of
dimension

√
n (i.e., same as in Theorem 9.20, except with larger dimension).

Note that the concatenated code also has constant rate, and the dominant
component in its construction is once again the pseudolinear code construc-
tion, which takes 2Oε(

√
n) time to perform deterministically, and Oε(n) time

9.5 Constructions with Better Rate Using Multi-concatenated Codes 235

to perform probabilistically (here by the Oε notation we are hiding also con-
stant factors that depend on ε). We claim that the concatenated code can be
(1/2, O(1/ε), L)-list recovered in 2Oε(

√
n) time (for L = 2Oε(

√
n)). At the first

step, all the inner codes are (1/4, O(1/ε), O(1/ε))-list recovered by a brute-
force search over all codewords in q

O(
√

n)
0 time. This passes lists of size O(1/ε)

for the possible symbol at each position of the Reed-Solomon codeword. The
decoding is completed by going over every set of a fraction 1/4 of these lists
and every choice of symbols from each of these lists, and for each of them
checking if there is a Reed-Solomon codeword consistent with those sym-
bols. This brute-force procedure takes about (1/ε)O(

√
n) time and succeeds

in (1/4, O(1/ε), L)-list recovering the Reed-Solomon code. The correctness of
this procedure follows using arguments similar to those of Theorem 9.20.

We thus have a constant rate code which is (1/2, O(1/ε), L)-list recov-
erable in 2Oε(

√
n) time. Using this in the construction of Proposition 9.18,

we can get a rate Ω(ε) code C∗ list decodable in 2Oε(
√

n) time from up to a
fraction (1− ε) of errors, as we desired to show.

To get binary codes, we can concatenate C∗ with a binary code of rate
Ω(ε2) which has list decoding radius (1/2− O(ε)) for a list size of O(1/ε2).
Such codes exist by the result of Theorem 5.8 (from Chapter 5). This gives
binary codes of rate Ω(ε3) that are list decodable in 2Oε(

√
n) time from up to

a fraction (1/2− ε) of errors. Note that the rate is better than the result of
Theorem 8.11 that achieved a rate of Ω(ε4). However, the construction and
decoding time are no longer polynomial in the blocklength.

In the next section, we present a more complicated scheme to improve the
decoding time to 2O(Nγ) for any desired γ > 0. The spirit of the construction
is the same as in this section; the details are however more complicated.

9.5 Constructions with Better Rate Using
Multi-concatenated Codes

We now introduce a code construction where an outer Reed-Solomon code is
concatenated with multiple levels of inner codes (as guaranteed by Lemma 9.6,
albeit over large, growing sized alphabets which decrease in size from the
outermost to innermost levels). We call such codes multi-concatenated codes,
which are discussed in Section 9.5.1. We will then, in Section 9.5.2, use these
codes to prove Theorem 9.22 which allows us improve the rate (from The-
orem 9.20) by an ε factor at the expense of the decoding time becoming
sub-exponential in the blocklength. This gives our construction (2a), and
yields codes of the optimal Ω(ε) rate that have list decoding algorithms of
“reasonable” complexity for correcting a fraction (1− ε) of errors. Following
this, in Section 9.5.3, we will concatenate these codes with appropriate bi-
nary codes to get our construction (2b), i.e., binary codes of rate Ω(ε3) list
decodable in sub-exponential time from up to a fraction (1/2− ε) of errors.

236 9 New, Expander-Based List Decodable Codes

9.5.1 The Basic Multi-concatenated Code

We now describe the construction of multi-concatenated codes and their prop-
erties. This is stated formally in the lemma below. The result is similar to
Lemma 9.12 in terms of the parameters of the codes it guarantees. In fact,
for the case p = 1, the result is in fact just that of Lemma 9.12 (with the
claimed decoding time being that of the naive decoding algorithm that does
a brute-force search over all possible codewords).

For larger values of p, the construction is somewhat messy. The result
for larger values of p is necessary only to improve the decoding time from
the 2O(

√
N) bound that was presented in Section 9.4.4 to 2O(Nγ). The reader

might want to take the result of the lemma below as a black-box in the first
reading and come back to its proof if interested after seeing its applications in
Sections 9.5.2 and 9.5.3 (the case p = 1 for those applications gives precisely
the constructions outlined in Section 9.4.4).

Lemma 9.21. For every p ≥ 1 and all sufficiently small ε > 0, there exist a
code family with the following properties:

(i) (Rate and alphabet size) The family has rate 2−O(p2) and is defined over
an alphabet of size O(1/ε2).

(ii) (List decodability property) Each member of the code family is

(1
2 , 1

ε , 2O(p2)

ε)-list recoverable. Furthermore such list decoding can be ac-
complished in 2O(N1/p log(1/ε)) time, where N is the blocklength of the
concerned code.

(iii) (Constructibility) A code of blocklength N in the family can be con-
structed in probabilistic O(N2 log(1/ε)) time (the code will have the list
decodability claimed in (ii) with high probability). A deterministic con-
struction can be obtained in 2O(Nε−1 log(1/ε)) time. Also, encoding can be
performed in O(N2 logO(1)(1/ε)) time.

Proof Idea. The basic idea is to use p levels of large alphabet pseudolinear
codes as guaranteed by Lemma 9.15 in a suitable concatenation scheme.
These codes will be defined over progressively decreasing alphabet size. The
outermost code will be a constant-rate code of blocklength O(N1/p) defined
over an alphabet of size q2·N(p−1)/p

(where q = O(1/ε2)). Each symbol of this
codeword will then be encoded by another code guaranteed by Lemma 9.15,
this time over a smaller alphabet GF(q2·N(p−2)/p

), but again of blocklength
O(N1/p) and constant rate. Each symbol of this encoding will be further
encoded by a similar constant rate code of blocklength O(N1/p), but over
an even smaller alphabet GF(q2·N(p−3)/p

), and so on. This will continue for
several more levels till the alphabet size is down to GF(q2·N1/p

). Finally each
of the field symbols is encoded by one final constant rate pseudolinear code
over GF(q) of dimension 2N1/p.

9.5 Constructions with Better Rate Using Multi-concatenated Codes 237

The big plus of using p levels is that the code at each level has dimension
and blocklength O(N1/p). Since the decoding time guaranteed by Lemma 9.15
was about (1/ε)O(m) where m was the dimension, we can exploit the “fast”
decoding of the codes at each level to give a decoding algorithm for the
overall multi-concatenated code with runtime exponential in N1/p, or sub-
exponential in N .

All in all, given a list Li of O(1/ε) symbols of GF(q) for each of the N
positions of the final codeword, the successive decodings pass up a list of
O(1/ε) symbols (with larger and larger constants in the big-Oh notation)
for each position of each pseudolinear codeword. Finally, after p levels of
decoding, we will recover a list of at most O(1/ε) codewords which includes
all codewords that agree with an element of Li for at least N/2 values of i.

The formal proof given below just follows the above idea, though it nec-
essarily involves a somewhat careful choice of parameters to ensure that the
decodings all work together to give the claimed list recoverability property.
The reader satisfied with the above proof idea should feel free to skip it.

Proof: Let q be a power of 2 with q = O(1/ε2) – we will define a code over
Fq. We will describe the code family by describing a code Cp that encodes

x ∈ Fn
q into Cp(x) ∈ Fn·2O(p2)

q , for any large enough n which is of the form
n = 2 · mp for some integer m. The code Cp is described below inductively
for increasing values of p.
Code Description. For p = 1, the code C1 will be a q-ary (α1, 1/ε, c/ε)-list
recoverable code that encodes a string of length 2m over Fq into a codeword
of length a1m (for suitable constants a1, c > 1 and α1 < 1). Such a code is
guaranteed to exist by Lemma 9.12.

For p > 1, the code Cp will be a q-ary code of dimension 2mp. We defined
the code Cp inductively using Cp−1 and a p’th level code Gp defined as follows.
Gp will be a code defined over an alphabet Σp of size q2mp−1

as guaranteed
by Lemma 9.15 (using the choice s = mp−1 in that lemma). Specifically, Gp

has dimension m and blocklength apm, where ap is a constant that depends
only on p but is independent of ε. Moreover, Gp is (αp, c

p−1/ε, cp/ε)-list
recoverable, for a suitable constant αp > 1 (the details on how to pick the
constants will be clarified shortly).

We now give an inductive definition of Cp in terms of Cp−1 and the above
code Gp. To encode x ∈ Fn

q using the code Cp, where n = 2mp, we view x
as a string of length m over GF(q2mp−1

) , and first encode it using Gp. This
gives us a string x1 of apm symbols over GF(q2mp−1

). We now view each of
these apm symbols as a string of length 2mp−1 over Fq and independently
encode them using Cp−1. This completes the inductive specification of the
code Cp.

The list recoverability requirement on Cp will let us fix the constants
αj ’s above. This will in turn fix the rates of the codes (or in other words the

238 9 New, Expander-Based List Decodable Codes

constant aj ’s). We sketch this next, followed by an analysis of the construction
complexity (both probabilistic and deterministic) of the code Cp.

Rate of the Construction. For every p ≥ 1, and each fixed α < 1, for
a large enough constant c = cp,α, we now wish to pick parameters (specif-
ically αj ’s) that allow us to show that the code Cp constructed above is
(α, 1/ε, cp/ε)-list recoverable in 2O(N1/p log(1/ε)) time where N is the block-
length of Cp. This can be achieved for p = 1 by a choice of C1 with α1 = α
and the rate of the code is an absolute constant (that depends on α). For
p > 1, let us by induction pick Cp−1 so that it is (α/2, 1/ε, cp−1/ε)-list re-
coverable. We will pick the “outermost” code Gp in the construction of Cp so
that it is (α/2, cp−1/ε, cp/ε)-list recoverable. By Lemma 9.15 we have such a
Gp with rate

R(Gp) ≥ 1
6
(α/2− 1/c) . (9.6)

Now, applying a standard averaging argument one can combine the facts that
Cp−1 is (α/2, 1/ε, cp−1/ε)-list recoverable and Gp is (α/2, cp−1/ε, cp/ε)-list
recoverable to conclude that Cp is (α, 1/ε, cp/ε)-list recoverable. It remains
to estimate the rate R(Cp) of the code Cp (as a function f of α, p). By the
above construction, we have

f(α, p) = R(Gp)f(α/2, p− 1) ≥ 1
6

(α

2
− 1

c

)
f(α/2, p− 1) (using (9.6)) .

Unwinding the recurrence, for α a fixed constant, like α = 1/2 say, we can get
Cp that is (1/2, 1/ε, cp/ε)-list recoverable with c � O(2p) and rate R(Cp) =
2−O(p2). We have thus verified Property (i) for our code construction.

Decoding Complexity. The decoding of the code Cp proceeds inductively
from the lowermost levels of the concatenation upwards. This is also best de-
scribed inductively. For p = 1, as mentioned earlier, the decoding of C1 pro-
ceeds by running over all qO(m) = qO(N) codewords. For p > 1, given lists of
size 1/ε at each position of the code, each of O(m) codes Cp−1 used to encode
the symbols of Gp can be list recovered by induction in 2O(m log(1/ε)) time.
This passes a list of cp−1/ε possible symbols for each of the apm positions of
the code Gp. The code Gp is then list recovered to produce a final set of cp/ε
messages as the answers. Since Gp is picked as guaranteed by Lemma 9.15,
the list recovering of Gp can be performed in (cp−1/ε)O(m) = 2O(m log(1/ε))

time as well (absorbing factors which depend on cp−1 into the big-Oh no-
tation, since we treat c, p as fixed constants). The overall decoding time is
the sum of the decoding times for Cp−1 and Gp, and is thus 2O(m log(1/ε)).
Since n = 2mp is the length of the message and the rate of Cp is 2−O(p2), we
have the overall blocklength N = 2O(p2)n = O(mp). Therefore, the overall
decoding complexity equals 2O(N1/p log(1/ε)), as claimed in Part (ii) of the
lemma.

9.5 Constructions with Better Rate Using Multi-concatenated Codes 239

Construction Complexity. We finally verify the claimed construction
complexity bounds for the code Cp. For p = 1, we appeal to Lemma 9.12
to conclude that C1 can be constructed in O(N2ε−1 log(1/ε)) probabilistic
time, or 2O(Nε−1 log(1/ε)) deterministic time. For p > 1, the dominant com-
ponent is the time to construct the outermost code Gp. Lemma 9.15 implies
that Gp can be constructed in Ep can be constructed in O(m2p log(1/ε))
time probabilistically, and in 2O(mpε−1 log(1/ε)) time deterministically. Since
m = O(N1/p), the construction time is O(N2 log(1/ε)) probabilistically, and
2O(Nε−1 log(1/ε)) deterministically. The encoding time is again dominated by
the time to perform the outermost encoding according to Gp, and is therefore
O(m2p log2 q) = O(N2 log2(1/ε)). This completes the proof of Property (iii)
in the statement of the lemma. �

9.5.2 Codes of Rate Ω(ε) with Sub-exponential List Decoding for
a Fraction (1 − ε) of Errors

We now use the multi-concatenated codes from the previous section to attain
rate Ω(ε) for codes list decodable up to a fraction (1 − ε) of errors in sub-
exponential time. Note that such a result was also discussed in Section 9.4.4,
but we will now improve the decoding time from 2O(

√
N) to 2O(Nγ) for each

fixed γ > 0. Setting γ = 1/2 in the below theorem gives the result claimed
in Section 9.4.4.

Theorem 9.22. For every constant γ > 0 the following holds: for all suffi-
ciently small ε > 0, there exists a code family with the following properties:

(i) (Rate and alphabet size) The code has rate Ω(ε2−O(γ−2)) and is defined
over an alphabet of size 2O(ε−1 log(1/ε)).

(ii) (Construction complexity) A description of a code of blocklength N in
the family can be constructed in probabilistic O(N2−2γ log(1/ε)) time,
or deterministically in time 2O(N1−γε−1 log(1/ε)). Moreover the code can
be encoded in O(N2(1−γ) log2 N logO(1)(1/ε)) time.

(iii) (List decodability) The code can be list decoded in 2O(Nγ log(1/ε)) time
from up to a fraction (1 − ε) of errors.

Proof: We use a construction quite similar to that of Theorem 9.20. Let
p′ = �1/γ� and q0 = O(1/ε2) be a prime power. At the outermost level, we use

a Reed-Solomon code CRS of blocklength n0 over a field of size q
np′−1

0
0 (instead

of a field of size n0 that we used in earlier constructions). Furthermore, the
rate of the Reed-Solomon code will now be an absolute constant, say 1/4 (as
opposed to O(ε) earlier). Each of the n0 field elements (viewed as a string of
length np′−1

0 over GF(q0)) is encoded using a multi-concatenated inner code
C′

in that encodes np′−1
0 symbols into 2O(p2)np′−1

0 symbols (over GF(q0)) and
which has the properties guaranteed by Lemma 9.21 for p = p′ − 1. Denote

240 9 New, Expander-Based List Decodable Codes

by CRS−in the resulting concatenated code. The rest of the construction (i.e.
obtaining the final code C∗ from CRS−in using a disperser) is the same as
Theorem 9.20, and the claims about the rate and alphabet size follow similarly
to Theorem 9.20. See Figure 9.5 for a sketch of the basic components in the
construction.

RS

Message

(constant

encoding

rate)

encoding

Multi−

concatenated

(constant rate)

Final codeword

(rate eps over large alphabet)

Expander
(degree 1/eps)

recoverable code C’

Constant rate list

Fig. 9.5. Basic structure of code construction that achieves rate Ω(ε) and list
decoding radius (1− ε). The list recoverability property of C′ enables list decoding
of the final code from a fraction (1 − ε) of errors.

About construction complexity, the significant component is finding the
inner code C′

in, which can be done in 2O(np′−1
0 ε−1 log(1/ε)) time by Lemma 9.21,

or in probabilistic O
(
(np′−1

0)2 log(1/ε)
)

time. Since the overall blocklength of
the code equals N = n02O(p2)np′−1

0 = 2O(p2)np′
0 , we have n0 = O(N1/p′

) and
hence the claimed bounds on the construction time follow.

About list decoding complexity, we claim that CRS−in is (1/2, O(1/ε), L)-
list recoverable in 2O(N1/p′

log(1/ε)) time, for L = 2O(N1/p′
log(1/ε)). Now,

appealing to Proposition 9.18 implies that our final code C∗ will then be
((1− ε)N, L)-list decodable in 2O(N1/p′

log(1/ε)) time, which is what we would
like to show.

To (1/2, O(1/ε), L)-list recover the concatenated code CRS−in, we first use
the decoding strategy guaranteed by Lemma 9.21 to (1/4, O(1/ε), O(1/ε))-
list recover each of the n0 inner codes. This takes a total of
n02O((np′−1

0)1/p log(1/ε)) = 2O(n0 log(1/ε)) time (since p = p′ − 1), and passes
lists of size O(2O(p2)/ε) corresponding to each position of the Reed-Solomon
code. Since we are thinking of p as a constant and ε as sufficiently small,
we can assume that lists of size O(1/ε) are passed for each position of the

9.5 Constructions with Better Rate Using Multi-concatenated Codes 241

Reed-Solomon code. For any message x that is a solution to the list recov-
ering instance, at least a fraction 1/4 of these lists contain the “correct”
symbol of CRS(x). We now finish the decoding by a brute-force decoding of
the outermost Reed-Solomon code as follows. Given lists of size O(1/ε) for
each of the n0 codeword positions (these lists are the ones obtained after the
independent decoding of the n0 inner codes), for each subset of n0/4 code-
word positions and each possible choice of field element from the respective
list (this involves considering

(
n0

n0/4

) · (O(1/ε))n0/4 = 2O(n0 log(1/ε)) possibil-
ities), we do the following. Determine if there is a Reed-Solomon codeword
consistent with the n0/4 field elements at the chosen positions (this can be
performed using a straightforward polynomial interpolation since the rate of
the Reed-Solomon code is 1/4), and, if so, include that codeword in the list.
Recalling that n0 = O(N1/p′

), it is clear that the Reed-Solomon decoding
can be performed in 2O(N1/p′

log(1/ε)) time. Since 1/p′ ≤ γ, this is consistent
with our claimed runtime. �

Improvement to List Size Note that the size of the list returned in de-
coding the above codes up to a fraction (1 − ε) of errors is 2O(Nγ log(1/ε)).
It might be of interest to keep this list size small, ideally a constant, even
if the decoding algorithm itself runs in sub-exponential time. This can be
achieved by skipping the use of the outermost Reed-Solomon code in the
above construction and just using the (1/2, O(1/ε), O(1/ε))-list recoverable
multi-concatenated code C′

in in the construction of Proposition 9.18. This will
also give a code that is ((1−ε)N, O(1/ε))-list decodable in time 2O(Nγ log(1/ε)),
at the expense of the construction times being slightly worse than those
claimed in Theorem 9.22. Specifically, the probabilistic construction time
will now be O(N2 log(1/ε)) and the deterministic construction time will be
2O(Nε−1 log(1/ε)).

A Version of Theorem 9.22 for List Recoverability We now state a
variant of Theorem 9.22 that will be useful in getting binary codes in the
next section.

Lemma 9.23. For every constant γ > 0 the following holds: for all ε > 0,
there exists a code family with the following properties:

(i) (Rate and alphabet size) The code has rate Ω(ε2−O(γ−2)) and is defined
over an alphabet of size 2O(ε−1 log(1/ε)).

(ii) (Construction complexity) A description of a code of blocklength N in
the family can be constructed in probabilistic O(N2−2γ log(1/ε)) time,
or deterministically in time 2O(N1−γε−3 log(1/ε)).

(iii) (List decodability) The code can be (ε/2, O(1/ε2), L)-list recovered in
2O(Nγ log(1/ε)) time (for L = 2O(Nγ log(1/ε))).

Proof (Sketch): The above result really follows using the same proof as
that of Theorem 9.22. The point is that we we assume the code CRS−in to

242 9 New, Expander-Based List Decodable Codes

be (1/2, O(1/ε3), L)-list recoverable (instead of (1/2, O(1/ε), L)-list recover-
able). Accordingly we will have to change its parameters and replace each ε
by ε3. But this will still keep its alphabet size q0 = 1/εO(1) and its rate will be
2−O(γ−2) which is a constant independent of ε. We will get our final code C∗

from the code CRS−in by applying Lemma 9.19 (instead of Proposition 9.18),
with the choice � = O(1/ε2). Thus we can get a code C∗ of rate Ω(ε) over
an alphabet of size q

O(1/ε)
0 = 2O(ε−1 log(1/ε)) which is (ε/2, O(1/ε2), L)-list

recoverable. �

9.5.3 Binary Codes of Rate Ω(ε3) with Sub-exponential List
Decoding Up to a Fraction (1/2 − ε) of Errors

We now use the code construction from Lemma 9.23 as outer codes in a con-
catenated scheme with a suitable binary inner code and obtain constructions
of good list decodable binary codes. Our result is stated formally below.

Theorem 9.24. For every constant γ > 0 the following holds: for all suf-
ficiently small ε > 0, there exists a binary code family with the following
properties:

(i) (Rate) It has rate Ω(ε32−O(γ−2)).
(ii) (Construction Complexity) A description of a code of block-

length N from the family can be constructed with high probabil-
ity in randomized O

(
(N2(1−γ) + ε−6) log(1/ε)

)
time or determin-

istically in time 2O(N1−γε−3 log(1/ε)). The code can be encoded in
O(N2(1−γ) log2 N logO(1)(1/ε)) time.

(iii) (List decodability) A code of blocklength N from the family can be list
decoded from up to (1/2− ε)N errors in 2O(Nγ log(1/ε)) time.

Proof: The code will be obtained by concatenation of an outer code Cout

over a large alphabet with a binary code Cinner. The code Cout will be picked
as guaranteed by Lemma 9.23 and will be over an alphabet Σout of size
2O(ε−1 log(1/ε)). Let m denote the blocklength of Cout. The code Cinner will
be a binary code of rate Ω(ε2), dimension lg |Σout| = O(ε−1 log(1/ε)), block-
length t = O(ε−3 log(1/ε)) which is ((1

2 − ε
2)t, O(1/ε2))-list decodable. Such

codes Cinner (in fact, linear codes) exist and can be found deterministically
in 2O(t) time (cf. Section 5.3.2 and Section 8.6.1). Alternatively, one can also
pick a random rate Ω(ε2) pseudolinear code by investing O(ε−6 log2(1/ε))
randomness. The fact that this such a code will be ((1/2− ε)t, O(1/ε2))-list
decodable with high probability can be seen using Lemma 9.8 with the choice
q = 2, p = (1 − ε)/2 and L = O(1/ε2).

Let us call the entire concatenated binary code Cbin and let its blocklength
be N = m · t. A codeword in Cbin is comprised of m blocks (of t bits each)
corresponding to the m codeword positions of the outer code Cout. Note
that Cbin clearly has the claimed rate since Cout has rate Ω(ε · 2−O(γ−2))

9.6 Improving the Alphabet Size: Juxtaposed Codes 243

and Cinner has rate Ω(ε2). The construction complexity of Cbin is the time
required to construct Cout plus that required to construct the binary code
Cinner. Therefore, using Lemma 9.23 and the above discussion concerning the
construction of Cinner, the claimed bound on the construction complexity of
Cbin follows. This proves Properties (i) and (ii) claimed in the theorem.

It remains to prove Property (iii) concerning the list decodability of Cbin.
By the list decodability property of Cout guaranteed by Lemma 9.23, we may
assume that there is an efficient algorithm Aout with runtime exponential in
mγ that, given as input lists Li of size O(1/ε2) for 1 ≤ i ≤ m, can find a
list of all codewords of 〈c1, . . . , cm〉 ∈ Cout such that ci ∈ Li for at least a
fraction ε/2 of the i’s.

The list decoding algorithm for Cbin works as follows. Given a received
word r ∈ {0, 1}N , the algorithm finds, for each i, 1 ≤ i ≤ m, a list Li of all
symbols β of Σout such that Cinner(β) differs from the i’th block ri of r in at
most t(1−ε)

2 positions. Since Cinner is ((1−ε)t/2, O(1/ε2))-list decodable, each
Li has at most O(1/ε2) elements. Now we run the decoding algorithm Aout

with input these m lists Li. The runtime of the algorithm is dominated by
that of Aout, which is 2O(mγ log(1/ε)), and is thus within the claimed bound.

To prove correctness of the algorithm, let c ∈ Cbin be any codeword which
differs from r in at most (1/2 − ε)N positions (the list decoding algorithm
must output every such c). Let βi, 1 ≤ i ≤ m, be the i’th symbol of the
codeword of Cout which upon concatenation with Cinner gives c. By a simple
averaging argument, one can show that for at least an εm/2 values of i,
1 ≤ i ≤ m, βi ∈ Li. By its claimed property, the decoding algorithm Aout

will hence place c on the list it outputs. This completes the proof of Property
(iii) claimed in the theorem as well. �

9.6 Improving the Alphabet Size: Juxtaposed Codes

One drawback of the result of Theorem 9.20 (as well as that of Theorem 9.22)
is that these give codes over an alphabet which is exponentially large in 1/ε. In
this section, we indicate how one can improve the alphabet size significantly
at the expense of a moderate worsening of the rate, by using an entirely
different technique (the technique is also somewhat simpler, as it avoids the
use of expanders). The basic idea is use to several concatenated codes, each
one of which is “good” for some error distribution, and then “juxtapose”
symbols from these codes together to obtain a new code over a larger alphabet
which has nice list decodability properties. The idea of juxtaposed codes is
already used in this chapter in the proof of Lemma 9.21, where we juxtaposed
a pseudolinear code with a linear code. But the use of juxtaposition there
was for a largely “technical” reason. On the other hand, juxtaposition is
fairly natural for the codes we construct in this section. The discussion in
Section 9.2.2 already presented a high level discussion of the rationale behind
juxtaposed codes; we further elaborate on this aspect below.

244 9 New, Expander-Based List Decodable Codes

9.6.1 Intuition

The basic intuition for considering juxtaposed codes can be understood by
considering the following very natural way of constructing a code list de-
codable up to a fraction (1 − ε) of errors. Namely, concatenate an outer
Reed-Solomon code (call its blocklength n0) with an inner code over an al-
phabet of size O(1/ε2) as guaranteed by Corollary 9.9. Each inner encoding
by itself can tolerate a fraction (1 − O(ε)) of errors via list decoding with
lists of size O(1/ε). Now consider a received word r and a codeword c of the
concatenated code which agree on a fraction ε of symbols. If this agreement
is evenly distributed among the n0 blocks that correspond to the various
inner encodings, then each of the n0 inner codes can be decoded (by a sim-
ple brute-force search over all inner codewords) and return a list of O(1/ε)
Reed-Solomon symbols that includes the “correct” symbol. If the rate of the
Reed-Solomon code is O(ε), list recovering the Reed-Solomon using these lists
is guaranteed to include the codeword c (cf. Chapter 6). The overall rate of
the concatenated code can thus be Ω(ε2), since both the Reed-Solomon and
inner codes can have rate Ω(ε).

This seems to give us the desired construction with rate Ω(ε2). There is
a (big) problem, however. There is no guarantee that errors will be evenly
distributed among the n0 blocks. In fact, on the other extreme, it is possible
that c and r agree completely on a fraction ε of the blocks, and differ com-
pletely on the remaining fraction (1 − ε) of the blocks. To tackle this case,
the natural inner decoding to perform is to, for each block, simply return the
symbol whose inner encoding is closest to that block of r. Now the “correct”
symbol (corresponding to c) will be thus passed to the outer Reed-Solomon
decoder for a fraction ε of the positions. To finish the decoding, we would
need to be able to list decode the Reed-Solomon code for a (1−ε) errors, and
it is only known how to do so efficiently if the rate is O(ε2) (cf. Chapter 6,
Theorem 6.16).

Thus the two widely differing (i.e. completely uniform and highly non-
uniform) distributions of errors between the various inner codeword blocks
require the rate of the Reed-Solomon code to be O(ε) and O(ε2) respectively.
Thus one has to conservatively pick the rate of the Reed-Solomon code to
be O(ε2) to handle the highly non-uniform distribution of errors. The rate of
the inner code has to be O(ε) to handle the uniform distribution of errors.
Therefore the overall rate has to be at most O(ε3).

A closer inspection of the question reveals that this limitation is due to
our using a single outer code and single inner code, which can only be opti-
mized for one error distribution, and suffers for a different error distribution.
This suggests the use of several concatenated codes in parallel, each with its
own outer and inner code rates that are optimized for a certain distribution of
errors between the various inner codeword blocks. These concatenated codes
can then be “put together” by juxtaposing their symbols together. Now, de-
pending on how uniformly the errors are distributed, a certain concatenated

9.6 Improving the Alphabet Size: Juxtaposed Codes 245

code “kicks in” and enables recovery of the message. The use of multiple con-
catenated codes reduces the rate compared to the expander based construc-
tions, and also increases the alphabet size compared to a single concatenated
code. It turns out, however, that we can still do much better on alphabet size
than the bound of 2O(ε−1 log(1/ε)) that was achieved by the construction of
Theorem 9.20.

9.6.2 The Actual Construction

We first discuss the basic code construction scheme, and then formally state
the theorems we obtain for appropriate setting of parameters. Let ε > 0 be
given; the goal being to construct a code family of good rate (as close to Ω(ε2)
as possible) that can be efficiently decoded from up to a fraction (1 − ε) of
errors. Let t ≥ 1 be an integer parameter (t will be the number of codes that
will be juxtaposed together).

Let δ0, δ1, . . . , δt be a sequence in geometric progression with δ0 = ε/2,
δt = 1, and δi/δi−1 = Δ for 1 ≤ i ≤ t. Note that these parameters must
satisfy Δt = 2/ε.

Fix c > 1 and let q0 = O(1/εc) be a prime power. Let m be a large enough
integer. The juxtaposed code construction, say C∗, that we now give, will be
parameterized by (q0, m, ε, t, Δ).

For each i, 1 ≤ i ≤ t, we will have one q0-ary concatenated code Ci with
outer code a Reed-Solomon code CRS

i and inner code an appropriate q0-ary
pseudolinear code Cin

i . The parameters of these codes will be as follows.

The Reed-Solomon Codes. The blocklength of each of the Reed-Solomon
codes will be the same, n0 = qm

0 . The code CRS
i will be defined over the alpha-

bet GF(qmi) where mi = mδi/δ0. The rate of CRS
i will be Ri = Θ(ε2/(t2δiΔ))

and its dimension will be ki = Rin0 (the reason for this choice of rate will be
become clear once we specify the decoding algorithm in the proof of Theo-
rem 9.25 below). Note that each message that is encoded by CRS

i consists of
ki symbols over GF(qmi

0), or equivalently, kimi = Rin0mi = Θ(εmn0
t2Δ) sym-

bols over GF(q0). This quantity is independent of i, and hence the number
of q0-ary symbols in the message of each CRS

i can made equal. This is very
useful for juxtaposing the codes together, as it makes sure that the dimension
of each of the concatenated codes Ci will be the same.

The Inner Codes. The blocklength of each inner code Cin
i will be the same,

say n1. Note that this ensures that each one of the concatenated codes Ci

has identical blocklength N
def= n0n1. The dimension of C in

i will be mi, so
that it can be concatenated with the Reed-Solomon code CRS

i (that was
defined over GF(qmi

0)). The code C in
i will have the properties guaranteed by

Corollary 9.9 – specifically, it will have rate ri = mi/n1 = Ω(δi−1) and will be

246 9 New, Expander-Based List Decodable Codes

((1 − δi−1)n1, O(1/δi−1))-list decodable.7 This implies that the blocklength
n1 equals

n1 = O
(mi

δi−1

)
= O

(mδi

δ0δi−1

)
= O

(mΔ

ε

)
,

which is independent of i and can thus be made identical for each of the inner
codes Cin

i .
The construction time of Ci is dominated by the construction time for

the inner code C in
i . Now, using Lemma 9.13, we know that a Cin

i with the

required properties can be constructed in deterministic q
O(n1)
0 = q

O(mΔ
ε)

0

time. Alternatively, a construction that works with high probability can be
obtained in O(n2

1 log q0) = O(m2Δ2ε−2 log(1/ε)) time.

a e f

d a c

abb

Message

C 1 C 3C 2

< a, e, f >

< d, a, c >

juxtaposed code
Encoding as per the

< b, b, a >

Codewords from 3 codes
(all have same length n) (also has same length n)

Codeword of juxtaposed code

Fig. 9.6. Illustration of juxtaposition of three codes C1, C2, C3.

The Juxtaposed Code. The final code, call it C∗, will be the juxtaposition
of the codes C1,C2, . . . ,Ct. Formally, by this we mean that to encode a
message according to C∗, we will encode it according to each Ci to give a

7The result of Corollary 9.9 will give such codes over an alphabet of size
O(1/δa

i−1) for any a > 1, but it can be checked that it will equally work over
the larger alphabet GF(q0) — essentially the larger alphabet only helps that result.

9.6 Improving the Alphabet Size: Juxtaposed Codes 247

codeword, say 〈ci1, . . . , ciN 〉 ∈ GF(q0)N . The associated codeword of C∗ will
then be 〈d1, . . . , dN 〉 ∈ GF(qt

0)
N where dj = 〈c1j , c2j , . . . , ctj〉 is interpreted

as an element of GF(qt
0). Figure 9.6 illustrates the juxtaposition operator

applied to three codes.
We now pick parameters δi’s appropriately in the above scheme and obtain

the following theorem. (We use the notation developed above freely in the
proof of the theorem.)

Theorem 9.25. For every ε > 0, every integer t ≥ 1 and each b > t, there
exists a code family with the following properties:

(i) It has rate Ω(t−3ε2+2/t) and is defined over an alphabet of size O(1/εb).
(ii) A code of blocklength N in the family can be constructed in NO(1/ε1+1/t)

time deterministically, and a construction that has the list decodability
property (iii) below with high probability can be obtained in probabilistic
O(ε−(2+2/t) log2 N) time.

(iii) A code of blocklength N belonging to the family can be list decoded from
up to a fraction (1 − ε) of errors in NO(1/ε) time using lists of size
O(t2/ε1+1/t).

Proof: Let ε > 0 be given. Pick q0 = O(1/εc) to be a power of 2 where
c = b/t > 1. Let us pick the δi’s in geometric progression with δ0 = ε/2,
δt = 1, and δi/δi−1 = Δ for 1 ≤ i ≤ t. Note that this implies Δ = (2/ε)1/t.

For every large enough integer m, we now apply the construction C∗

discussed above with parameters (q0, m, ε, t, Δ).
The code C∗ is then clearly defined over an alphabet of size qt

0 =
O((1/ε)ct) = O(1/εb) Recall that C∗ is the juxtaposition of t codes Ci,
1 ≤ i ≤ t, each of which is obtained by the concatenation of a rate Ri Reed-
Solomon code CRS

i with a rate ri inner code C in
i , where Ri = Θ(ε2

t2δiΔ
) and

ri = Θ(δi−1). Therefore the rate of each Ci equals

Riri = Ω
(ε2

t2δiΔ
· δi−1

)
= Ω

(ε2

t2Δ2

)
. (9.7)

Let K, N be the common dimension and blocklength respectively of the Ci’s.
The rate of the juxtaposed code C∗ is 1/t times the rate of each Ci because
of the juxtaposition operator and hence

R(C∗) = Ω
(ε2

t3Δ2

)
= Ω

(
t−3ε2+2/t

)
,

as claimed in Part (i) of the theorem.
The dominant component in the construction of C∗ is once again the

construction of the inner codes Cin
i used in the concatenated codes Ci.

By the argument from the discussion preceding this theorem, we have
that each Cin

i can be constructed in q
O(mΔ/ε)
0 time deterministically, and

248 9 New, Expander-Based List Decodable Codes

O(m2Δ2ε−2 log(1/ε)) time probabilistically. Since the overall blocklength
N = n0n1 = qm

0 n1, we have m ≤ log N/ log q0. Therefore the construc-
tions times are NO(Δ/ε) = NO(1/ε1+1/t) for a deterministic construction, and
O(Δ2ε−2 log2 N) = O(ε−(2+2/t) log2 N) for a probabilistic construction (that
works with high probability). This proves Property (ii) claimed in the theo-
rem.

It remains to prove the list decodability property of C∗. Specifically, we
wish to prove that given a received word r ∈ GF(qt

0)
N , we can output a list

of all codewords of C∗ that differ from r in at most (1 − ε)N positions, in
NO(1/ε) time. Indeed let c = C∗(x) be a codeword of C∗ that differs from r in
at most a fraction (1− ε) of places. Note that both r and c can be broken up
into n0 blocks of n1 symbols each, corresponding to the n0 inner encodings
at the n0 positions of the outer Reed-Solomon codes. (Here we are using the
fact that all the Reed-Solomon codes CRS

i and the inner codes C in
i have the

same blocklength, namely n0 and n1, respectively.)
Now comes the crucial part. Since the overall agreement between c and

r is at least a fraction ε of symbols, a standard averaging argument implies
that there exists a set B consisting of at least εn0/2 inner blocks, such that c
and r agree on more than a fraction ε/2 = δ0 of symbols within each block in
B. Now imagine partitioning the blocks in B into t parts Pi, 1 ≤ i ≤ t, in the
following way. The part Pi consists of all blocks in B for which the fractional
agreement between the portions of c and r corresponding to that block lies
in the interval (δi−1, δi]. One of these parts must have at least |B|/t blocks.
Let this part be Pi∗ . Hence we conclude that there exists some i∗, 1 ≤ i∗ ≤ t,
such that for at least a fraction ε

2tδi∗
of the n0 blocks, c and r agree on at

least a fraction δi∗−1 of positions within that block.
Now consider decoding the n0 inner codes C in

i∗ corresponding to this i∗

up to a radius of (1− δi∗−1) errors (here we focus attention on and use only
the i∗’th symbol from each of the N “juxtaposed” symbols from the received
word r). This can be accomplished by brute-force in a total of n0q

mδi∗/δ0
0 =

q
O(m/ε)
0 = n

O(1/ε)
0 time. By the property of Cin

i∗ , this decoding only outputs a
list L

(i∗)
j of O(1/δi∗−1) codewords (or in other words Reed-Solomon symbols

for the code CRS
i∗) for each of the blocks j, 1 ≤ j ≤ n0. By our choice of i∗,

at least εn0
2tδi∗

of these lists have the “correct” symbol of CRS
i∗ (x).

To finish the decoding, it suffices to be able to list decode CRS
i∗ with

these lists L
(i∗)
j , 1 ≤ j ≤ n0, as input, and find all messages x such that

L
(i∗)
j contains the j’th symbol of CRS

i∗ (x) for at least εn0
2tδi∗

values of j. We
can now apply the list recovering algorithm for Reed-Solomon codes from
Chapter 6 (specifically Theorem 6.21) to accomplish this decoding task in
near-quadratic time. Specifically, this follows by applying Theorem 6.21 with
the choice n = n0, k = ki∗−1 = O(n0

ε2

t2Δδi∗
) = O(n0

ε2δi∗−1
t2δ2

i∗
), � = O(1/δi∗−1)

and α = ε
2tδi∗

. It can be verified that the condition α >
√

2k�/n can be

9.7 Notes 249

satisfied with these setting of parameters. Moreover, by Theorem 6.21, the
number of codewords output by the decoding algorithm will be O(

√
n�/k),

which is O(tΔ/ε) for our choice of parameters.
Of course, the algorithm cannot know the value of i∗ in the above de-

scription, but running the above decoding procedure for each Ci, 1 ≤ i ≤ t,
will output a list of size at most O(t2Δ/ε) = O(t2ε−(1+1/t)) that includes all
codewords that differ from the received word r in at most a fraction (1− ε)
of the positions. The decoding time is dominated by the time to decode the
inner codes, which, as discussed earlier, takes n

O(1/ε)
0 = NO(1/ε) time. This

completes the proof of Property (iii) of the theorem as well. �

Comparison with Algebraic-geometric codes: Note that for t ≤ 3, the
result of Theorem 9.25 is incomparable to AG-codes, since it gets a better
alphabet size than AG-codes (which work over alphabet size of O(1/ε4)), but
the rate is worse than ε2. Thus the above codes give some new, interesting
trade-offs for codes that can be list decoded in polynomial time from a fraction
(1− ε) of errors.

By picking a fine “bucketing” with Δ = 2 and t = �lg(2/ε)� in the above
theorem, we can achieve a rate very close to ε2 though the alphabet size
becomes quasi-polynomial in 1/ε. This gives us the following result.

Corollary 9.26. For every ε > 0, there is a code family with the following
properties:

(i) (Rate and alphabet size) It has rate Ω(ε2 log−3(1/ε)) and is defined over
an alphabet of size 2O(log2(1/ε)).

(ii) (Construction complexity) A code of blocklength N in the family can be
constructed in NO(1/ε) time deterministically, and a construction that
has the list decodability property (iii) below with high probability can be
obtained in probabilistic O(log2 N/ε2) time.

(iii) (List decodability) A code of blocklength N in the family can be list de-
coded from up to a fraction (1− ε) of errors in NO(1/ε) time using lists
of size O(ε−1 log2(1/ε)).

9.7 Notes

The concept of good list recoverable codes, which was crucial to most of our
results in this chapter, also appears in the work on extractor codes by Ta-
Shma and Zuckerman [184]. The terminology “list recoverable codes” itself
was introduced for the first time by the author and Indyk in [81]. Ta-Shma
and Zuckerman also analyze the list recoverability of random codes. However,
their results are for general random codes and their proof makes use of the
complete independence of all the codewords. The result of Lemma 9.6, which
appears in [81], works for random pseudolinear codes and also gives bounds

250 9 New, Expander-Based List Decodable Codes

for list recovering with constant-sized lists. The result from [184], as stated
there, works for list size that depends on the blocklength of the code, since
their target is a more general decoding situation when the input lists at each
position could be of widely varying and potentially very large sizes. We, on
the other hand, place a uniform upper bound on the size of each input list,
and moreover are mainly interested in situations where this upper bound is
a small fraction of the alphabet size of the code.

In recent years, there have been several papers which construct codes
using expander-like graphs. Broadly, these use such graphs in two ways: either
to construct the parity check matrix [171, 176, 201] or to redistribute symbols
around in the encoding process [6]. Our codes constructions follow the spirit
of the second approach, in the sense that we also use expander-like graphs
(specifically dispersers) to distribute the symbols of the message. However,
our constructions are more involved than the construction of [6], since we
want to make the codes efficiently decodable. In particular there is a lot
more algorithmic focus in our work than in [6].

There has also been work on sub-exponential time unique decoding algo-
rithms. In particular, the algorithm of [203] can unique decode certain large
distance binary codes in 2O(

√
n) time. In fact it was this algorithm that mo-

tivated our discussion in Section 9.4.4. The quest for an improved decoding
time led us to the constructions using multi-concatenated codes that were
discussed in Section 9.5. The use of a sequence of inner codes in order to
decrease the decoding time by paying only a constant factor in the rate at
each level appears to be novel to the constructions in Section 9.5. Subsequent
work (using certain extractors) by Guruswami [79] achieves results similar to
those of Section 9.5.2 with an explicit construction: specifically, explicit codes
of rate ε/ logO(1)(1/ε) are constructed in [79] that have sub-exponential time
list decoding algorithms for a fraction (1− ε) of errors.

Except for the results of Section 9.6, the rest of the material discussed in
this chapter appears in [81]. The results of Section 9.6 appear in [82].

10 List Decoding from Erasures

We know accurately only when we know little,
with knowledge doubt increases.

Johann W. von Goethe

10.1 Introduction

The last two chapters presented a thorough investigation of the question of
constructions of good codes, i.e. codes of high rate, which are list decodable
from a very large, and essentially the “maximum” possible, fraction of er-
rors. Utilizing the Reed-Solomon decoding algorithms from Chapter 6 at the
core, we presented several novel constructions of efficiently constructible, en-
codable, and decodable codes that approach the (best possible) performance
of random codes (for which we do not know of any efficient construction or
decoding procedures). The focus was on the noise model where a certain ad-
versarially chosen fraction of the symbols are in error (the actual errors can
also be adversarially picked).

In this chapter, we consider the noise model of erasures. Under this model
the symbols at an adversarially chosen set of positions are simply erased and
the rest of the symbols are transmitted with no error. The receiver is assumed
to know the positions where erasures have occurred. This is in fact a simpler
situation to deal with, since any symbol received unerased is guaranteed to be
correct, and reconstructing the codeword is more of an “interpolation-type”
problem than an error-recovery problem. We already dealt with erasures in
Chapter 6 where we discussed a decoding algorithm for Reed-Solomon codes
in the presence of both errors and erasures. Also, under soft decoding, which
was also discussed in Chapter 6, an erasure can be modeled by the weight
(confidence rating) for the erased symbol being set to 0. Erasures are a pop-
ularly used method to model packet losses in the Internet, and indeed good
erasure codes are useful tools to deal with packet losses in communication
over the Internet.

Having already dealt with the more challenging model of errors, the reader
might wonder why we are now moving to a “simpler” model. The reasons are
two-fold. First, the fact that erasures are easier to deal with implies that it

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 251-277, 2004.
© Springer-Verlag Berlin Heidelberg 2004

252 10 List Decoding from Erasures

becomes possible to achieve better parameters (eg. rate) compared to the
errors case, and approaching the optimal performance becomes a challenging
question that is interesting by itself and is not subsumed by any of the results
for the errors case. Second, many of the techniques developed in the previous
two chapters apply to this chapter as well, and having already developed
them for the errors case, the application to erasures becomes a lot easier to
present now.

Following the spirit of the last two chapters, we will be interested in codes
with non-trivial list decoding performance for erasures — specifically, codes of
“large” rate that are list decodable using “small” lists from a “large” number
of erasures. We consider combinatorial questions concerning list decoding
from erasures and establish lower and upper bounds on the rate of a code
that can be list decoded with list size L when up to a fraction p of its symbols
are adversarially erased. Our results show that in the limit of large L, the rate
of such a code approaches the capacity (1− p) of the erasure channel. This is
in the spirit of the results in Chapter 5. We then present results on efficiently
constructible codes which approach the performance indicated possible by
the combinatorial results. This is in the spirit of Chapters 8 and 9 where
similar results were obtained for the errors case.1

One of the results of this chapter shows a provable separation between
the asymptotic performance of linear and non-linear codes for erasure list
decodability for certain settings of parameters. This result is quite surprising,
at least to us, since such a situation is quite rare in coding theory.

10.2 Overview

We focus on binary codes for most of the chapter, except notably Section 10.8
where the larger alphabet size is critically used. The emphasis on binary codes
is only to keep the presentation simple and all claims go through for codes
over Fq for any fixed q.

We first present the basic definitions relating to list decodability from
erasures in Section 10.3. The relation between erasure list-decodability and
distance is studied in Section 10.5. In Section 10.6, we study the trade-off
between erasure list decodability and the rate of a code, and obtain upper
and lower bounds on the best possible rate of a code with certain erasure
list decodability. We then move on to constructive results in Section 10.7,

1The choice to discuss the combinatorial results relating to list decoding from
erasures in this chapter as opposed to in Chapter 5 or in a separate chapter in
Part I of the book was deliberate. The combinatorial results of this chapter have
a “local” presence and are only used for the constructions in this chapter. Hence
we felt there was no need to burden the reader with this material earlier on in the
book. As a side benefit, this makes the current chapter quite self-contained and
cohesive.

10.3 Definitions 253

and present concatenated codes which get reasonably close to the combina-
torial bounds. Finally, in Section 10.8 we present constructions of juxtaposed
codes which almost achieve the best possible rate for a given erasure list-
decodability, albeit over much larger alphabets than binary.

10.3 Definitions

We now present the basic definitions relating to list decoding from erasures.
For y ∈ [q]n and T ⊆ {1, 2, . . . , n}, define [y]T ∈ [q]|T | to be the projection of
y onto the coordinates in T .

Definition 10.1 ((s, L)-erasure list-decodability). A q-ary code C of
blocklength n is said to be (s, L)-erasure list-decodable if for every r ∈ [q]n−s

and every set T ⊆ {1, 2, . . . , n} of size (n − s), we have |{c ∈ C : [c]T =
r}| ≤ L. In other words, given any received word with at most s erasures, the
number of codewords consistent with the received word is at most L.

Note that a code of minimum distance d is (d−1, 1)-erasure list-decodable,
but is not (d, 1)-erasure list-decodable.

Definition 10.2 (Erasure List Decoding Radius). For an integer L ≥
1 and a code C, the list-of-L erasure decoding radius of C, denoted
ErasureRadL(C), is defined to be the maximum value of s for which C is
(s, L)-erasure list-decodable. We also define the normalized list-of-L erasure
decoding radius, denoted ErasureLDRL(C), as

ErasureLDRL(C) =
ErasureRad(C, L)

n
,

where n is the blocklength of C.

As before we would like to extend this definition for families of codes,
since our aim is to study the asymptotic performance of codes.

Definition 10.3 (Erasure LDR for Code Families). For an infinite fam-
ily C = {Ci}i≥1 of codes and an integer L ≥ 1, the list-of-L erasure decoding
radius of C, denoted
ErasureLDRL(C), is defined to be

ErasureLDRL(C) def= lim inf
i
{ErasureLDRL(Ci)} . (10.1)

One can also allow a list size that is a growing function of the blocklength
of the codes in the above definition (as we did in Definition 2.4 for the case
of list decoding from errors). But all our results in this chapter will apply
with a fixed list size independent of the blocklength. Hence, to keep things
simple, we stick to a constant list size in the above definition.

We now define the function which measures the trade-off achievable be-
tween rate and erasure list decoding radius.

254 10 List Decoding from Erasures

Definition 10.4. For an integer L and 0 ≤ p ≤ 1, the maximum rate of a
q-ary code family with list-of-L erasure decoding radius at least p, denoted
R̃L,q(p), is defined as

R̃L,q(p) def= sup
C: ErasureLDRL(C)≥p

R(C) . (10.2)

where the supremum is taken over all q-ary code families C with
ErasureLDRL(C) ≥ p.
If the supremum is taken over all linear q-ary code families with
ErasureLDRL(C) ≥ p, then we denote the above rate function by R̃lin

L,q(p).
For the binary case q = 2, we will denote R̃L,2(p) and R̃lin

L,2(p) as simply
R̃L(p) and R̃lin

L (p), respectively.

Note: Recall that we used RL(p) for the similar quantity for the case of
errors. To avoid conflict with that notation, we have now used R̃L(p) to
represent the corresponding function for erasures.

10.3.1 Comment on Combinatorial Vs. Algorithmic Erasure
List-Decodability

For linear codes, list decoding from erasures is algorithmically easy as it
just amounts to finding the space of solutions to a linear system. Thus, if
a linear code is (s, L)-erasure list-decodable for some small L, then a list of
size at most L can also be efficiently output given any received word with
at most s erasures.2 Thus for linear codes, it suffices to find codes with
good combinatorial erasure list-decodability, and this automatically implies
a polynomial time list decoding algorithm from a large number of erasures.
However, it might still be possible to give a faster algorithm than the one
that solves a linear system and outputs all its solutions. Such a reduction
from algorithmic to combinatorial erasure list-decodability does not hold for
general, non-linear codes. Therefore, in Section 10.8 where we give non-linear
codes, there is a need to explicitly argue that a fast erasure recovery algorithm
exists, in addition to the fact that the list size will be small for the concerned
number of erasures.

10.4 Relation to Generalized Hamming Weights

The notion of erasure list-decodability of linear codes has been implicitly
studied in the literature under the name of generalized Hamming weights

2This is not true for the case when there are errors, where algorithmic list
decodability is potentially a lot more difficult to achieve than combinatorial list
decodability. In fact, though we presented several list decoding algorithms that
decode up to the combinatorial (Johnson) bounds, there remain constructions of
codes with good combinatorial list decodability, but for which efficient list decoding
algorithms are not known.

10.4 Relation to Generalized Hamming Weights 255

(this was pointed out to us by Ralf Koetter). For a set D ⊆ Fn
2 , define the

support of D as supp(D) = {i : ∃ 〈x1, x2, . . . , xn〉 ∈ D, xi
= 0}.

Definition 10.5 (Generalized Hamming weight). The r’th generalized
Hamming weight of a linear code C, denoted dr(C), is defined to be the size
of the smallest support of an r-dimensional subcode of C.

Note that d1(C) equals the traditional minimum distance of C. The con-
cept of generalized Hamming weights was first introduced in [194] with some
cryptographic applications in mind, and has since received an enormous
amount of attention; see, for example, [39, 15], and in particular the ex-
pository paper [189] and the pointers therein. It is known to have a wealth of
unexpected applications such as in cryptography (which was the original mo-
tivation for its introduction in [194]), the study of t-resilient functions, state
complexity of trellis diagrams, and in the design of codes for the switching
multiple-access channel. However, surprisingly, its relation to list decoding,
as detailed in the simple lemma below, seems not to have been made explicit
before in the literature.

Lemma 10.6. Let C be any linear code. Then, C is (e, L)-erasure list-
decodable if and only if dr(C) > e where r = 1 + �lg L�.
Proof: Suppose C is (e, L)-erasure list-decodable. Let c1, c2, . . . , cr be r lin-
early independent codewords in C which span a subcode C′ of dimension r.
We wish to show that |supp(C′)| > e. Consider the received word r that has
all positions in supp(C′) erased and 0’s in the remaining positions. Clearly
each of the 2r > L codewords in C′ is consistent with r, which together with
the (e, L)-erasure list-decodability of C implies that supp(C′) > e.

Conversely, suppose dr(C) > e. Let r be a received word with e erasures;
let T be the set of unerased positions. The set of codewords of C consistent
with r is an affine space consisting of solutions to the linear system c|T = r|T
(here x|T denotes the projection of x onto coordinates in T). Let this set
be {c1, . . . , cM}; we wish to prove M ≤ L. Consider the set D = {ci − c1 :
1 ≤ i ≤ M}. Then D is a linear subspace of C with supp(D) ∩ T = ∅, and
hence |supp(D)| ≤ e. Using dr(C) > e, this means dim(D) ≤ r − 1 = �lg L�,
implying M = |D| = 2dim(D) ≤ 2�lg L� ≤ L. �

In light of the above connection, results on list decoding presented in this
paper inherit the applications of generalized Hamming weights and thus have
interest beyond the subject of list decoding. However, since our primary moti-
vation came from list decoding, we state all our results using the terminology
of list decodable codes, and if the readers feel the need, they should have
no difficulty in translating them into the language of generalized Hamming
weights.

256 10 List Decoding from Erasures

10.5 Erasure List-Decodability and Minimum Distance

We now study the erasure list-decodability of a code purely as a function of
its minimum distance. This can be viewed as the analog of Chapters 3 and
4 for the case of erasures. The situation for erasures is generally much easier
to analyze, though.

The two results below together show that, purely as a function of the
relative distance, the best bound on the erasure list decoding radius of a q-
ary code of relative distance δ is qδ/(q−1). This is the analog of the “Johnson
radius” for the case of erasures.

Proposition 10.7. Let C be a q-ary code of blocklength n and relative dis-
tance δ. Then, for any ε > 0, C is ((q

q−1−ε)δn, q
(q−1)ε)-erasure list-decodable.

Proof: Define s = (q
q−1 − ε)δn, t = n− s, and let r ∈ [q]t be a received word

with s erasures. Without loss of generality, assume that the first s symbols of
r have been erased. Let ci, 1 ≤ i ≤ M , be all the codewords of C that agree
with r in the last (n − s) positions. Hence they all agree with each other in
the last t positions. For each i, 1 ≤ i ≤ M , define c̃i to be the truncation of
ci to the first s positions. We have Δ(c̃i, c̃j) ≥ δn = (q

q−1 − ε)−1s.
Thus we have M strings of length s with fractional distance between any

pair strictly larger than (1− 1/q). It is a folklore fact there can be at most a
constant (independent of s) number of such strings. One way to prove this is
as follows. As in the proof of Proposition 8.1 from Chapter 8, we can associate
sq-dimensional real unit vectors vi with each c̃i such that

〈vi, vj〉 =
(
1− q

q − 1
Δ(c̃i, c̃j)

s

)
.

Since Δ(c̃i, c̃j) ≥ (q
q−1 − ε)−1s for i
= j, we have

〈vi, vj〉 ≤ −ε
q

q−1 − ε
.

By Lemma 3.5, the number of such vectors is at most

1 +
q/(q − 1)− ε

ε
=

q

(q − 1)ε
.

Hence M ≤ q
(q−1)ε , and therefore C is (s, q

(q−1)ε)-erasure list-decodable. �

Proposition 10.8. For every q, and every δ, 0 < δ < (1−1/q), and all small
enough ε > 0, the following holds. For all large enough n, there exists a q-ary
code C of relative distance at least δ which is not ((q

q−1 + ε)δn, 2Ω(ε2δn))-
erasure list-decodable.

10.6 Combinatorial Bounds for Erasure List-Decodability 257

Proof: Define n′ = (q
q−1 + ε)δn. Pick a q-ary code C′ of blocklength n′ that

meets the Gilbert-Varshamov bound and has minimum distance at least δn =
(q

q−1 +ε)−1n′. The relative distance δ′ of this code is at most (1−1/q−O(ε)),
and therefore the code has rate r ≥ 1 − Hq(δ′) = Ω(ε2). Now form a code
C of blocklength n from C′ by just padding each codeword with (n − n′)
zeroes. The minimum distance of C is still at least δn, and hence its relative
distance is at least δ. Moreover, consider the received word r for C whose
first n′ positions are erased and the last (n − n′) positions contain zeroes.
Clearly all codewords in C agree with r in the unerased positions. Thus, C is
not (n′, |C| − 1)-erasure list-decodable. Recalling that n′ = (q

q−1 + ε)δn and

|C| = |C′| ≥ 2rn′
= 2Ω(ε2δn), we get the claimed result. �

The above two results indicate that in order to construct, say binary, codes
which are erasure list-decodable up to a fraction (1−ε) of erasures, it suffices
to construct codes which have relative distance (1/2−O(ε)). Moreover, if one
only uses the distance to bound the erasure list decoding radius, then a rela-
tive distance of (1/2−O(ε)) is also necessary. Since there is an upper bound
of O(ε2 log(1/ε)) on the rate of such large distance binary codes [139], this
indicates that the best rate for codes erasure list-decodable from a fraction
(1− ε) of erasures that one can obtain by this method is also O(ε2 log(1/ε)).
However, it turns out that a much better rate of Ω(ε) is achievable for such
codes by directly studying the trade-off between erasure list-decodability and
rate. The detailed investigation of such a trade-off is the subject of the next
section.

10.6 Combinatorial Bounds for Erasure
List-Decodability

10.6.1 Discussion

We now proceed to establish lower and upper bounds on this function R̃L(p).
Since the list-of-1 ELDR of a code family equals its relative distance δ,
R̃1(p) = R(δ) is the central function in coding theory that studies the trade-
off between the rate and relative distance of a code. One of the consequences
of results of this chapter (specifically Theorems 10.9 and 10.14) is that in
the limit of large L, the function R̃L(p) (as well as R̃lin

L (p)) tends to 1 − p,
thus matching the singleton bound. This result has the following nice inter-
pretation. It is a classical result in coding theory that the capacity of the
erasure channel where each codeword symbol is randomly and independently
erased with probability p, equals (1 − p) [47]. Thus our results show that
using list decoding with large enough (but constant-sized) lists, one can ap-
proach capacity even if the symbols that are erased are adversarially (and
not randomly) chosen.

258 10 List Decoding from Erasures

Our upper bound on R̃L(p) also shows that R̃L(p) < 1 − p for every p
and every fixed list size L (we stress that this result holds even for general,
non-linear codes). Thus one needs unbounded list size in order to approach
the capacity of the adversarial erasure channel using list decoding. We point
out that similar statements also held for the errors case — the results of
Chapter 5 imply that, in the limit of large L, there exists binary linear codes
with rate approaching (1−H(p)) and list decodable using lists of size L up
to a fraction p of errors, and also that one requires unbounded L in order to
get arbitrarily close to the “capacity” 1−H(p).

10.6.2 Lower Bound on R̃L(p)

Theorem 10.9. For every integer L ≥ 1 and every p, 0 ≤ p ≤ 1, we have

R̃L(p) ≥ L

L + 1
(1− p)− H(p)

L + 1
. (10.3)

Proof: The proof follows by a straightforward application of the probabilis-
tic method. Pick a random binary code C of blocklength n and with 2rn

codewords, where the rate r will be specified shortly. The number of re-
ceived words with s = pn erasures is exactly

(
n
pn

)
2(1−p)n, and thus at most

2(H(p)+1−p)n. For each such received word, the probability that there exist
some L + 1 codewords all of which agree with it in every unerased position
is at most (

2rn

L + 1

)(
2−(1−p)n

)L+1
.

The probability that C is not (pn, L)-erasure list-decodable is thus at most

2(H(p)+1−p)n · 2rn(L+1)2−(1−p)n(L+1)

which is o(1) for

r =
L

L + 1
(1 − p)− H(p)

L + 1
− o(1) .

Therefore, the lower bound on R̃L(p) claimed in (10.3) holds. �

Erasure List-Decodability of Pseudolinear Codes The above analyzes
the performance of general, random codes. It is desirable to achieve similar
lower bounds using much less randomness, say by using random pseudolinear
or random linear codes. We defer the latter to the next section and now state
a result for random pseudolinear codes. The proof follows along the same
lines as the above proof – we use the fact any L non-zero codewords of a
random (L, 2)-pseudolinear code are mutually independent, and hence the
probability that they all agree with some received word with s erasures, is
easy to compute. Thus, one can conclude that or every p, 0 < p < 1, and every

10.6 Combinatorial Bounds for Erasure List-Decodability 259

integer L ≥ 2, there exists an infinite family CL of binary (L, 2)-pseudolinear
codes of rate r given by

r = (1− p)
L− 1

L
− H(p)

L
,

with the property that the list-of-L erasure decoding radius of CL is at least p.
Applying this to the case p = 1−σ and using the upper bound H(p) = H(1−
σ) ≤ σ lg(e/σ) gives the result below. The claimed construction times follows
since a random (L, 2)-pseudolinear code of dimension k and blocklength n can
be picked using a random n × O(kL) Boolean matrix, and the construction
can be derandomized (by using techniques similar to those from Section 9.3.3,
but now applied to the erasure setting) in 2O(kL) time. We omit the by now
standard details.

Lemma 10.10. For every σ, 0 < σ < 1/2, there exist L = O(log(1/σ)) and
a family of (L, 2)-pseudolinear codes with the following properties:

(i) It has rate Θ(σ).
(ii) A code of blocklength n in the family is ((1 − σ)n, L)-erasure list-

decodable.
(iii) A code of blocklength n in the family can be constructed in

O(n2σ log(1/σ)) time probabilistically and in 2O(σ log(1/σ)n) time deter-
ministically.

We will use the codes guaranteed by the above lemma in Section 10.8 as
inner codes in a suitable concatenation scheme. We next turn to linear codes.

10.6.3 Lower Bound on R̃lin
L (p)

A Lower Bound Using Theorem 10.9 For every integer L ≥ 1 and every
p, 0 ≤ p ≤ 1, it is easy to deduce the lower bound

R̃lin
L (p) ≥ J − 1

J
(1− p)− H(p)

J
, (10.4)

where J = �lg(L+1)�, using a proof similar to that the result of Theorem 10.9.
Indeed, we can pick a random linear code and analyze the probability that
there are (L + 1) codewords all agreeing with some received word that has a
fraction p of symbols erased. Now, any set of (L + 1) codewords must have
at least J = �lg(L + 1)� codewords that correspond to encodings of linearly
independent messages. Therefore we can simply consider each set of J linearly
independent messages and analyze the probability that they are mapped to a
set of J codewords all of which agree with a received word that has a fraction
p of erasures. Owing to the mutual independence of these J codewords, an
analysis similar to Theorem 10.9 can be carried out with every occurrence of
(L+1) being replaced by J . This argument has already been used in a couple
of places in the book, namely in the proofs of Theorem 5.6 and Lemma 9.10.

260 10 List Decoding from Erasures

While this lower bound will suffice for our applications to concatenated
schemes (in Section 10.7), we now state a slightly better lower bound that
is implicit in the literature due to the connection to generalized Hamming
weights mention in Section 10.4. But the difference between the new bound
and (10.4) above becomes negligible for large L.

A Better Lower Bound on R̃lin
L (p) The connection to generalized Ham-

ming weights from Lemma 10.6, together with existing lower bounds in the
literature for the rate as a function of generalized Hamming weights [194, 97,
189], gives the following when stated in our notation. In particular, the result
below follows from Theorem 8 in [97].

Theorem 10.11. For every integer L ≥ 1 and every p, 0 ≤ p ≤ 1, we have

R̃lin
L (p) ≥ 1− p

r
lg(2r − 1)− H(p)

r
(10.5)

where r = �lg(L + 1)�.
For our purposes, in Section 10.7, we would like to use the codes guaran-

teed by the above result as inner codes in suitable concatenated schemes. The
following lemma focuses on the parameter range that we will be interested in
and also guarantees a “gradual” increase in list size as more and more code-
word symbols are erased, up to a fraction (1 − ε) of erasures. Though such
a result can be obtained by going through the proofs in the literature (eg.
that of Theorem 10.11), the result is not stated explicitly in the literature on
generalized Hamming weights and since the proof is fairly simple, we include
a proof for the sake of completeness. Also, details of the proof will come in
handy when we try to “derandomize” this construction in Section 10.7.3.

Lemma 10.12. There exist absolute constants A, B > 0 such that for every
ε, 0 ≤ ε ≤ 1/2, for all sufficiently large n, there exists an [n, k]2 linear
code C with k = � εn

lg(A/ε)� that is (s, Bn
n−s)-erasure list-decodable for every s ≤

(1−ε)n. Furthermore, a random [n, k] binary linear code has this erasure list-
decodability property with overwhelming (specifically, 1− 2−Ω(n)) probability.

Before proving the above lemma, we state the following folklore combi-
natorial lemma that gives a useful linear-algebraic characterization of when
a linear code is (s, L)-erasure list-decodable.

Lemma 10.13. An [n, k]2 linear code C is (s, L)-erasure list-decodable if and
only if its n × k generator matrix G has the property that every (n − s) × k
sub-matrix of G has rank at least (k − �lg L�).
Proof: Let T ⊆ {1, 2, . . . , n} with |T | = n− s and r ∈ {0, 1}n−s, the number
of codewords c ∈ C with [c]T = r is precisely the number of solutions x ∈
{0, 1}k to the system GT x = r where GT is the sub-matrix of G consisting of

10.6 Combinatorial Bounds for Erasure List-Decodability 261

all rows indexed by elements in T . By standard linear algebra, the number
of solutions x to the linear system GT x = 0 is precisely 2� where � = k −
rank(GT), and for any r ∈ {0, 1}n−s, the number of solutions x to GT x = r
is at most 2� (in fact, it is always either 0 or 2�). Hence C is (s, L)-erasure
list-decodable if and only if for every T ⊆ {1, . . . , n} with |T | = n − s, GT

has rank at least k − �lg L�. �

Proof of Lemma 10.12: The proof is based on the probabilistic method.
We will pick a code C generated by a random n × k generator matrix G
where k is as specified in the statement of the lemma.3 We will prove that
except with probability 2−Ω(n), such a random code is (s, 8n

n−s)-erasure list-
decodable for every s, n/2 ≤ s ≤ (1 − ε)n. Indeed, let use fix an s between
n/2 and (−1ε)n and estimate the probability that C is not (s, 8n

n−s)-erasure
list-decodable. By Lemma 10.13, this happens only if some (n − s) × k sub-
matrix of G has rank less than k − lg(8n

n−s). Let σ = (n − s)/n; we have
ε ≤ σ ≤ 1/2. For a fixed (n − s) × k submatrix of G and any J ≤ k, the
probability that it has rank (k−J) is at most 2kJ2−(n−s)J . This follows since
for a fixed subspace S of Fk

2 of dimension (k − J), the probability that all t
rows of M lie in S is at most 2−Jt, and furthermore the number of subspaces
of Fk

2 of dimension (k− J) is at most 2kJ as one can specify such a subspace
as the null-space of a J×k matrix over F2. By a union bound the probability
that a fixed (n− s)× k submatrix of G has rank at most (k − J ′) is at most
k2(k−n+s)J′

.
Therefore the probability that some (n− s)× k sub-matrix of G has rank

less than k − lg(8/σ) is at most(
n

n− s

)
· k · 2(k−n+s) lg(8/σ) ≤ k ·

(e

σ

)σn

· 2
(
(ε/ lg(8/ε))−σ

)
lg(8/σ)n

= k · 2−n
(
σ lg(8/e)− ε lg(8/σ)

lg(8/ε)

)
≤ 2−Θ(n) ,

where the last step follows since σ ≥ ε, and in the first step we used the
inequality

(
n

σn

) ≤ (e/σ)σn for σ ≤ 1/2.
Now, applying the union bound again, the probability that for some s,

n/2 ≤ s ≤ (1 − ε)n, C is not (s, 8n
n−s)-erasure list-decodable is also expo-

nentially small. Hence there exists a linear code C of block length n and
rate ε/ lg(8/ε) that is (s, 8n

n−s)-erasure list-decodable for every s that satisfies
n/2 ≤ s ≤ (1 − ε)n. Since the list size for s < n/2 erasures is at most the
list size for n/2 erasures, such a code is also (s, 16n

n−s)-erasure list-decodable
for every s, 0 ≤ s ≤ (1 − ε)n. This proves the claim of the lemma (with the
choice A = 8 and B = 16 for the absolute constants). �

3We will assume for simplicity that C has dimension k, i.e. G has full column
rank, since for k much smaller than n, as it is on our case, this happens with very
high probability.

262 10 List Decoding from Erasures

Remark: Note that the above lemma not only guarantees the existence of
codes with the required properties, but also proves that a random code has
these properties with very high probability.

10.6.4 Upper Bound on R̃L(p)

We now turn to upper bounds on R̃L(p). It is easy to prove that for any
fixed L (in fact even for a list size L that is allowed to grow polynomially
in the blocklength), we must have R̃L(p) ≤ 1 − p. Indeed, let C be a code
of blocklength n and rate R, and let T = {1, 2, . . . , (1 − p)n}. Pick y ∈
{0, 1}(1−p)n uniformly at random and consider the set Sy of codewords c ∈
C that satisfy [c]T = y. The expected number of such codewords equals
2rn2−(1−p)n, and hence there must exist a y ∈ {0, 1}n for which |Sy| ≥
2(r−(1−p))n. Since we want |Sy| ≤ L ≤ poly(n), we must have R ≤ (1 − p).
Hence R̃L(p) ≤ 1 − p. Below, we are interested in a better upper bound on
R̃L(p), which in particular bounds it strictly away from (1 − p) for every
fixed L (and thereby shows that one requires unbounded list size in order
to approach the “capacity” (1 − p) of the erasure channel). Such a bound
is stated in Theorem 10.14 below. The first upper is a generalization of the
Elias-Bassalygo bound for the rate vs. minimum distance trade-off, while the
second upper bound is a generalization of the Plotkin bound. These bounds
were earlier also proved in [39]; see also the account in [189, Sec. V.B].

Theorem 10.14. For every integer L ≥ 1 and every p, 0 ≤ p ≤ 1− 2−L, we
have

R̃L(p) ≤ min
{

1−H(λ), 1− p

1− 2−L

}
, (10.6)

where λ is the unique root of the equation λL+1 + (1 − λ)L+1 = 1− p in the
range 0 ≤ λ ≤ 1/2. For p ≥ 1− 2−L, we have R̃L(p) = 0.

Proof: We will first prove that R̃L(p) ≤ 1 −H(α) for any 0 ≤ α ≤ 1/2 that
satisfies αL+1 + (1− α)L+1 ≥ 1− p. We will later deduce the claimed upper
bounds on R̃L(p) from this fact.

Let α such that αL+1 +(1−α)L+1 ≥ 1−p; we wish to prove that R̃L(p) ≤
1−H(α). Let C be a (pn, L)-erasure list-decodable code of blocklength n with
M0 codewords. Our goal is to prove an upper bound on M0.

The proof follows along the lines of the Elias-Bassalygo upper bound on
the rate of a code in terms of its minimum distance (cf. [193, Section 5.2]).
Pick a random v ∈ {0, 1}n and consider the subset C′ of all codewords of C
that are at a Hamming distance αn from v. The expected size of C′ equals
|C|(n

αn

)
2−n ≥ M02(H(α)−1)n−o(n). Hence there exists such a code C′ with

|C′| = M ≥ M02(H(α)−1)n−o(n) . (10.7)

By shifting the origin to v, we can assume that all codewords of C′ have
Hamming weight exactly αn. We will prove an upper bound on M , and by
Equation (10.7) this will imply an upper bound on M0 as well.

10.6 Combinatorial Bounds for Erasure List-Decodability 263

We will prove an upper bound on M by counting the total number N of
pairs (S, i) such that S is an (L + 1)-element subset of C′ and 1 ≤ i ≤ n,
and all codewords in S agree in position i. Since C is (pn, L)-erasure list-
decodable and C′ is a subset of C, C′ is also (pn, L)-erasure list-decodable.
Hence for any such subset S of (L + 1) codewords from C′, the number of
codeword positions where all codewords in S agree is at most ((1− p)n− 1).
We therefore have

N ≤
(

M

L + 1

)(
(1− p)n− 1

)
. (10.8)

We next establish a lower bound on N . Arrange the codewords in C′ in the
form of a M × n matrix in the obvious way with the rows being the various
codewords. Let ai be the fraction of 1’s in the i’th column of this matrix.
Since each codeword of C′ has weight exactly αn, we have

∑n
i=1 ai = αn.

Also, by definition we have

N =
n∑

i=1

[(
aiM

L + 1

)
+
(

(1− ai)M
L + 1

)]

≥ n

[(
αM

L + 1

)
+
(

(1− α)M
L + 1

)]
(10.9)

where we have used the fact that
∑

i ai = αn, and hence the minimum value
of

n∑
i=1

[(
aiM

L + 1

)
+
(

(1− ai)M
L + 1

)]

is achieved when each ai = α. We now claim that any 0 ≤ β ≤ 1 and large
enough M , (

βM

L + 1

)
≥
(
βL+1 − 2L2βL

M

)(M

L + 1

)
. (10.10)

The above is clearly true if β = 0, 1, so assume 0 < β < 1. Also assume
M ≥ 2L/β (as otherwise we will already have a good upper bound on M).
Now,(

βM

L + 1

)(
M

L + 1

)−1

=
βM(βM − 1) · · · (βM − L)

M(M − 1) · · · (M − L)

≥ β
(
β − L

M − L

)L

≥ βL+1
(
1− 2L

βM

)L

(since M ≥ 2L/β ≥ 2L)

≥ βL+1
(
1− 2L2

βM

)

giving Equation (10.10) (the last step follows using the inequality (1−x)L ≥
1− xL for x ≤ 1 and L ≥ 1).

264 10 List Decoding from Erasures

Now, combining (10.8), (10.9) and (10.10), we get, assuming M ≥ 2L/α,
that

M
(
αL+1 + (1− α)L+1 − (1 − p) + 1/n

) ≤ 2L2
(
αL + (1− α)L

)
.

Thus as long as αL+1 +(1−α)L+1 ≥ 1− p, we have M ≤ max{2L/α, 2L2n}.
Recalling Equation (10.7), the size M0 of the original code C satisfied M0 ≤
M2(1−H(α))n+o(n). Hence we get M0 ≤ 2(1−H(α))n+o(n), and R(C) = lg M0

n ≤
1−H(α)+o(1). Since C was an arbitrary (pn, L)-erasure list-decodable code,
this proves that R̃L(p) ≤ 1−H(α), as we set out to prove.

Recall that α was any real number in the range [0, 1/2] that satisfied
αL+1 + (1 − α)L+1 ≥ 1 − p. Now, if p ≥ 1 − 2−L, we can pick α = 1/2 and
this will imply R̃L(p) = 0. For the case when p < 1 − 2−L, we note that the
function f(α) = αL+1 + (1 − α)L+1 is decreasing in the range 0 ≤ α ≤ 1/2
with f(0) = 1 ≥ 1 − p and f(1/2) = 2−L < 1 − p, and thus the equation
f(α) = 1− p has a unique solution, say λ, in the range 0 ≤ λ < 1/2. We can
then use α = λ and conclude R̃L(p) ≤ 1 −H(λ), which gives the first upper
bound claimed in Equation (10.6).

It now remains to prove the second upper bound R̃L(p) ≤ 1−p/(1−2−L)
in the range 0 ≤ p ≤ 1−2−L. We know that R̃L(0) = 1 and R̃L(1−2−L) = 0,
and this upper bound simply amounts to proving that R̃L(p) always lies on
or below the straight line joining the points (0, 1) and (1− 2−L, 0). We prove
this by a standard “puncturing” argument. Let C be a (pn, L)-erasure list-
decodable code. Let γ = 1 − p

1−2−L . For each a ∈ {0, 1}γn, define Ca to be
the subcode of C consisting of all codewords whose first γn positions agree
with a, and let C′

a be the code obtained from Ca by puncturing the first γn
positions. The blocklength of C′

a equals n′ = (1 − γ)n. Since C is (pn, L)-
erasure list-decodable, for each a ∈ {0, 1}γn, C′

a must also be (pn, L)-erasure
list-decodable. Now pn = pn′/(1−γ) = (1−2−L)n′, and since R̃L(1−2−L) =
0, we have |Ca| = |C′

a| = 2o(n) for each a ∈ {0, 1}γn. Hence |C| ≤ 2γn+o(n).
Recalling that γ = 1− p

1−2−L , we have R̃L(p) ≤ 1− p
1−2−L , as claimed. �

Corollary 10.15. For every integer L ≥ 1 and every p, 0 < p < 1, we have
R̃L(p) < 1− p.

Comment on the bound (10.6)
For L = 1, the two bounds proven in Theorem 10.14 are precisely the Elias-
Bassalygo and Plotkin bounds on the rate of a code in terms of its minimum
distance, which state that R(δ) ≤ 1 − H(1−√

1−2δ
2) and R(δ) ≤ 1 − 2δ,

respectively. For large L, the bound R̃L(p) ≤ 1− p/(1− 2−L) is better than
the other bound R̃L(p) ≤ 1 −H(λ) except for very small p (less than about
L/2L).

10.7 A Good Erasure List-Decodable Binary Code Construction 265

10.6.5 Improved Upper Bound for R̃lin
L (p)

The previous upper bound applied to general binary codes. We next ask the
question whether a better upper bound is possible if one restricts attention
to binary linear codes, i.e. whether an upper bound better than (10.6) exists
for R̃lin

L (p). The answer to this question is yes, and this follows from the
bound below, which, using the connection to generalized Hamming weights
from Section 10.4, is implicit in [39] (see also the account in [189, Sec. V.B]).

Using this bound, we will in fact be able to exhibit a provable separation
between the power of linear and non-linear codes with respect to erasure
list-decodability.

Theorem 10.16 ([39]). For every integer L ≥ 1 and every p, 0 ≤ p ≤
1− 2−L, we have

R̃lin
L (p) ≤ min

{
1−H(λ), 1 − p

1− 2−r

}
, (10.11)

where r = 1 + �lg L� and where λ is the unique root of the equation λr+1 +
(1− λ)r+1 = 1− p in the range 0 ≤ λ ≤ 1/2. For p ≥ 1− 2−r (this condition
is satisfied if p ≥ 1− 1

2L), we have R̃lin
L (p) = 0.

10.6.6 Provable Separation Between Erasure List-Decodable
Linear and Non-linear Codes

The following result shows that list decoding up to a fraction (1 − ε) of
erasures can be accomplished using non-linear codes with an exponentially
smaller list size compared to that achievable using linear codes.

Theorem 10.17. Let ε > 0 and Clin be a binary linear code family of positive
rate with ErasureLDRL(Clin) ≥ 1 − ε. Then L = Ω(1/ε). On the other hand,
there exists a binary code family C of positive rate (in fact, rate Ω(ε)) with
ErasureLDRL′(C) ≥ 1− ε for L′ = O(log(1/ε)).

Proof: The lower bound on list size for linear codes follows from Theo-
rem 10.16 with the setting p = 1 − ε. The claim about general, non-linear
codes follows from Theorem 10.9 with the setting p = 1 − ε (and using
H(ε) ≤ O(ε log(1/ε))). In fact by Lemma 10.10, we can achieve a similar
performance with a family of (L′, 2)-pseudolinear codes as well. �

10.7 A Good Erasure List-Decodable Binary Code
Construction

10.7.1 Context

We have so far investigated the best rate possible for codes with a certain era-
sure list-decodability. These results were all probabilistic and demonstrated

266 10 List Decoding from Erasures

that good codes exist in abundance. However, they did not give an efficient
procedure to construct them deterministically. We now move on to the ques-
tion of efficient constructions of such codes and efficient algorithms to decode
them from erasures. We will focus on binary codes for this section.

As for the errors case, we will again focus on the high-noise regime to
state and prove our results. For the erasures case, this means list decoding
when up to a fraction (1 − ε) of symbols could be adversarially erased. We
loosely give such codes the label “highly erasure list-decodable codes”.

The existential results state that the best rate one can hope for such
codes is Ω(ε) (with a list size of O(log(1/ε)) for non-linear codes and 1/εO(1)

for linear codes). The relation between the erasure list decoding radius and
minimum distance established in Section 10.5, implies that we can construct
highly erasure list-decodable codes by using binary linear codes of relative
distance 1/2 − O(ε). The best explicit constructions of such large distance
binary codes achieves a rate of Ω(ε3) [6, 164]. Thus, we can also construct
explicit codes of rate Ω(ε3) which are efficiently list decodable from a fraction
(1−ε) of erasures. (Since the code is linear, the fact that the list size is small
up to a fraction (1− ε) of erasures immediately gives an at most cubic time
algorithm to find and output the list.)

We now present a concatenated code construction that improves this
bound and achieves a rate of Ω(ε2/ log(1/ε)). We stress that our result is not
obtained by appealing to the above mentioned distance to erasure list decod-
ing radius relation. Indeed no polynomial time constructions of binary code
families of relative distance (1/2−O(ε)) and rate about ε2 are known. In fact
such a construction, which will asymptotically match the Gilbert-Varshamov
bound at low rates, will be a major breakthrough in coding theory.4

10.7.2 The Formal Result

Theorem 10.18. For every ε > 0, there exists a family of binary linear
codes of rate Ω(ε2/ log(1/ε)) such that a code of block length N in the family
can be constructed in 2ε−O(1)

+ poly(N, 1/ε) time, and can be list decoded in
polynomial time using lists of size O(1/ε) when up to a fraction (1− ε) of its
symbols are erased.

The above result follows immediately from the following lemma.

Lemma 10.19. There exist absolute constants b, d such that for all large
enough integers K and all small enough ε > 0, there exists a binary linear
code CK that has the following properties:

(i) CK has dimension K and block length N ≤ bK log(1/ε)
ε2 .

(ii) The generator matrix of CK can be constructed in 2ε−O(1)
+poly(N, 1/ε)

time.
4The reader might recall that the same applied to our construction in Chapter 8

of binary codes of rate Ω(ε4) list decodable up to a fraction (1/2 − ε) of errors.

10.7 A Good Erasure List-Decodable Binary Code Construction 267

(iii) CK is ((1−ε)N, d
ε)-erasure list-decodable (and since CK is linear there is

an O(N3) time list decoding algorithm to decode up to (1−ε)N erasures
using lists of size O(1/ε)).

Proof: The code CK is constructed by concatenating an outer code Cout over
GF(2m) of block length n0, dimension k0 = K/m and minimum distance d0,
with an inner code Cin as guaranteed by Part (ii) of Lemma 10.12. By using
a construction in [6], we can pick parameters so that k0 = K/m = Ω(εn0),
m = O(1/ε) and d0 = (1−O(ε))n0 (for convenience, we hide constants using
big-Oh notation, but we stress that these are absolute constants that do not
depend on ε).5 We note that this choice of Cout is not linear over GF(2m)
(though it is additive), but a (succinct) description of Cout can be constructed
in time poly(n0, 1/ε). Moreover, after concatenation with an inner binary
linear code, the overall concatenated code will be a binary linear code.

The inner code Cin will be a code as guaranteed by Lemma 10.12 of
dimension m and block length n1 = O(m lg(1/ε)

ε) that is ((1 − σ)n1, B/σ)-
erasure list-decodable for every σ ≥ ε/2. We can construct such a code by a
brute-force search in 2O(mn1) = 2ε−O(1)

time. Once we have descriptions of
Cout and Cin, one can construct the generator matrix of the concatenated
code CK in poly(N, 1/ε) time where N = n0n1 is the block length of CK .
Now N = n0 ·n1 = O(K

mε) ·O(m lg(1/ε)
ε) = O(K lg(1/ε)

ε2). This proves Parts (i)
and (ii) of the statement of the lemma.

We now prove that CK is ((1 − ε)N, O(1/ε))-erasure list-decodable. Let
y be a received word with (1 − ε)N erasures, and let c′1, c

′
2, . . . , c

′
M be the

codewords in CK “consistent” with y, and let cj be the codeword of Cout

corresponding to c′j , for 1 ≤ j ≤ M . We wish to prove that M = O(1/ε). Let
yi be the portion of y corresponding to the i’th outer codeword position, for
1 ≤ i ≤ n0. Let the number of symbols in yi be σin1. We have

∑
i σi = εn0.

Define Q = {i : σi ≥ ε/2}. Clearly we have
∑
i∈Q

σi ≥ εn0

2
. (10.12)

Now define “weights” wi,β for 1 ≤ i ≤ n0 and β ∈ GF(2m) as follows. If
i /∈ Q, set wi,β = 0 for all β ∈ GF(2m). If i ∈ Q, then σi ≥ ε/2 and hence by
construction Cin is ((1− σi)n1, B/σi)-erasure list-decodable. In other words,
if Ji = {β : Cin(β) is consistent with yi }, then |Ji| ≤ B/σi. We set (for
i ∈ Q):

wi,β =
{

σi if β ∈ Ji

0 if β /∈ Ji

5Actually, we can use certain families of algebraic-geometric codes and even
have m = O(log(1/ε)). But we prefer to use the codes from [6] as they are more
elementary, and we do not want to give the impression that we need complicated
AG-codes for our construction.

268 10 List Decoding from Erasures

Since |Ji| ≤ B/σi, our choice of weights clearly satisfy∑
i,β

w2
i,β ≤ B

∑
i∈Q

σi . (10.13)

We now use a combinatorial result that gives an upper bound on the num-
ber of codewords of Cout that satisfy a certain weighted condition depending
on the distance d0 of Cout. Recalling the result of Corollary 3.7, for any
ε′ > 0, we have that the the number of codewords (α1, α2, . . . , αn0) ∈ Cout

that satisfy
n0∑
i=1

wi,αi ≥
((

n0 − d0(1 − ε′)
)∑

i,β

w2
i,β

)1/2

(10.14)

is at most 1/ε′.
Now for each cj , 1 ≤ j ≤ M , and each i ∈ Q, we have cj,i ∈ Ji, where

cj,i ∈ GF(2m) denotes the i’th symbol of cj. Now, wi,cj,i = σi for every i ∈ Q
and wi,cj,i = 0 for i /∈ Q. Thus, we have

n0∑
i=1

wi,cj,i =
∑
i∈Q

σi . (10.15)

Combining Equations (10.12), (10.13) and (10.15), we have that the code-
word cj satisfies Condition (10.14) as long as

εn0

2
≥ (n0 − d0(1− ε′))B ,

which can be satisfied provided d0 ≥ n0

(
1− ε

2B

)
(1− ε′)−1. Picking ε′ = ε

4B ,
we only need d0 = n0(1 − O(ε)) which is satisfied for our choice of Cout.
Hence the number of codewords consistent with the received word y is at
most 1/ε′ = O(1/ε), thus proving Part (iii) of the lemma as well. �
Remark: The previous results from [89] along the lines of the above theorem
achieved a block length of N = min{O(K2

ε2), O(K
ε3)}. Thus, our result achieves

the best features of both these bounds and gets N = Õ(K/ε2) (hiding the
lg(1/ε) factor).

10.7.3 Obtaining Near-Linear Encoding and Decoding Times

The codes constructed in Lemma 10.19 being linear can be encoded in O(N2)
time and can be list decoded from a fraction (1 − ε) of erasures in O(N3)
time by solving a linear system. By using Reed-Solomon codes as outer
code, the encoding can be accomplished in O(N logO(1) N) time. This is be-
cause the outer encoding can be performed using O(N log N) field operations
by employing FFT based methods, and then the inner encoding just takes
O(log2 N) time for each of the N outer codeword symbols. For decoding, the

10.7 A Good Erasure List-Decodable Binary Code Construction 269

inner codes can be decoded in O(log3 N) time by solving a linear system, and
then the Reed-Solomon code can be decoded from a set of weights that sat-
isfy Condition (10.14) in near-linear time using fast implementations [57, 4]
of the Reed-Solomon decoding algorithm in [88]. There is, however, a poten-
tial problem in using Reed-Solomon codes as outer codes. In such a case, the
inner code needs to be a linear code of dimension Ω(log N), and hence a brute
force search for the inner code will take time which has a quasi-polynomial
dependence on N . Therefore, if we seek a deterministic construction, then
the construction time no longer appears to be polynomial in N .

Nevertheless, there is a way to obtain a polynomial time construction
of the necessary inner code. By Lemma 10.12, a random linear code will
have the erasure list-decodability property required by the inner code with
high probability. This randomized construction can be derandomized using
the method of conditional expectations in time significantly better than that
required for brute-force search over all possible codes. We only sketch the
details here — the reader can find a discussion of the method of conditional
expectations, for example, in [10, Chap. 15].

To pick an [n, k]2 linear code, we pick the n rows of the n× k generator
matrix G in sequence, each time going through all possible choices in Fk

2

and picking the one which minimizes a certain conditional expectation. The
relevant conditional expectation in question concerns the expected number of
t×k sub-matrices of G which have rank at most k−log(n/t)−c, summed over
all t, εn ≤ t ≤ n (here c is a large enough absolute constant). Lemma 10.13
implies that finding a generator matrix where there are no such sub-matrices
is equivalent to the construction of an [n, k]2 linear code that satisfies the
requirement of Lemma 10.12, Part (ii). To be able to compute the relevant
conditional expectations easily, we will introduce indicator random variables
whose expectation provides a pessimistic estimation of the true expectation,
and compute their expectations instead.

We will introduce an indicator random variable I(T, S) for each T ⊆ [n]
with |T | = t ≥ εn and each S ⊆ Fk

2 of linearly independent vectors with
|S| = log(n/t) + c. We will define I(T, S) = 1 if the span of the rows of
the generator matrix G that are indexed by T is contained in the null space
of the span of S, and I(T, S) = 0 otherwise. Thus if I(T, S) = 1, then the
|T |× k sub-matrix of G corresponding to rows in T has rank at most k− |S|,
and provides a “counterexample” to the code constructed having the desired
erasure list-decodability property. The event “I(T, S) = 1” is therefore one
that we would like to avoid, for every choice of T, S. It is easy to see that for
each fixed T, S, the conditional expectation of I(T, S) after the first few rows
of G have been fixed (taken over the random choice of the remaining rows)
can be computed exactly, since it is simply the probability that each of the
rows in T that have not been fixed yet lie in the null space of S.

Now, define the random variable X =
∑

T,S I(T, S). By linearity of ex-
pectation, the conditional expectation of X can be computed exactly for each

270 10 List Decoding from Erasures

choice of a subset of rows of G. The initial expectation of X , say E, is ex-
ponentially small in n provided k = Θ(εn/ log(1/ε)) (this follows from the
proof of Part (ii) of Lemma 10.12).

Hence the above derandomization procedure will find a matrix G whose
X value is at most E, and since for each fixed G, the random variable X
takes on an integer value, we must have X(G) = 0. This implies in turn that
G has the required rank property for its sub-matrices, as desired.

The runtime of this derandomization procedure is dominated by the time
to consider all possible candidates for the sets T and S above. Therefore, it
takes at most

2n · 2O(k log(1/ε)) = 2O(k log(1/ε)/ε)

time (since k = Θ(εn/ log(1/ε)).)
Applying this to the context of concatenation with an outer Reed-Solomon

code where the dimension k = O(log N), we conclude that the generator
matrix of a linear inner code that has the required properties can be computed
in NO(ε−1 log(1/ε)) time. This is dominant component in the construction of
the concatenated code, and therefore the overall code can be constructed in
NO(ε−1 log(1/ε)) time.

To summarize, we can prove the result of Lemma 10.19 with codes that
have a near-linear time encoder and list decoder, and an NO(ε−1 log(1/ε)) time
deterministic construction.

10.7.4 The ε2 “Rate Barrier” for Binary Linear Codes

We now present a connection between good erasure list-decodable binary lin-
ear codes and certain bipartite Ramsey graphs. This indicates that improving
the rate in Theorem 10.18 to, say εa for some a < 2, with a very efficient
(say poly(N, 1/ε)) construction time is likely to be difficult. This connection
was pointed out to us by Noga Alon [5].

For a Boolean matrix, a sub-matrix is said to be monochromatic if either
all its entries equal 0 or all of them equal 1. The bipartite Ramsey prob-
lem asks for a construction of n × n Boolean matrices which have no p × p
monochromatic sub-matrices (where p is a certain function of n), for infinitely
many values of n. Such a matrix has an obvious connection to n×n bipartite
graphs which have no complete bipartite subgraph Kp,p or its complement
as an induced subgraph. Hence the terminology “bipartite Ramsey problem”
is used to refer to this problem. A straightforward application of the proba-
bilistic method shows that, for all large enough n, there exist such matrices
which achieve p = O(log n). However, an explicit or polynomial time con-
struction of such a matrix is a much harder task. The best known polynomial
time constructions of n× n 0-1 matrices only rule out the existence of p× p
monochromatic sub-matrices for p about

√
n. A polynomial time construc-

tion with p much smaller than
√

n is a folklore open problem. The following
result shows a connection between certain erasure list-decodable codes and

10.7 A Good Erasure List-Decodable Binary Code Construction 271

bipartite Ramsey graphs. It shows that achieving a rate of Ω(εa) for some
a < 2 for our linear code construction from the previous sections, will, under
some conditions, imply an improvement to the “

√
n bound” for the bipartite

Ramsey problem.

Proposition 10.20 (Alon). Assume that for every large enough integer k
and every ε > 0, there exists an [n, k]2 linear code C of rate k/n = εa, a > 1,
such that (a) the generator matrix of C can be constructed in O(ncf(ε)) time
where c is an absolute constant and f is an arbitrary real-valued function,
and (b) C is ((1 − ε)n, 1/εO(1))-erasure list-decodable. Then, for any γ > 0,
for infinitely many n, there exists an O(ncf(n−(1/a−γ))) time construction of
an n× n matrix over F2 which has no monochromatic p× p sub-matrix, i.e.,
no p× p sub-matrix that consists of all 0’s or all 1’s, for p = n1−1/a+γ .

Proof: For a large enough integer n and small enough γ > 0, pick ε =
n−(1/a−γ). Then by the hypothesis, there exists an [n, k]2 linear code C with
the claimed properties for k = εan = naγ . Let A be the n × k generator
matrix of C. Define p = εn = n1+γ−1/a. By Lemma 10.13, the assumed
erasure list-decodability property of C implies that the rank of each p × k
sub-matrix of A is at least (k − O(log 1/ε)) = k − O(log n). Define j to be
the smallest integer for which the number of subsets of {1, 2, . . . , k} of size
exactly j is at least n. Since k = naγ , we have j ≤ 2

aγ (for large enough n).
Construct an n × n matrix B by having its columns be all the linear

combinations (over F2) of exactly j distinct columns of A. (This might create
more than n columns since the number of such combinations could exceed n;
in this case we just pick a subset of n linear combinations arbitrarily.)

We will prove that B has no p× p monochromatic sub-matrix consisting
of all 0’s or all 1’s. Suppose not, and let B have a p×p sub-matrix consisting
of only 0’s (the case of all 1’s can be dealt with similarly). Let I be the set
of rows involved in this sub-matrix, and let v1,v2, . . . ,vk be the restrictions
of the columns of A to the rows in I. Let M be the p × k sub-matrix of A
indexed by the rows in I. By assumption about the p× p all 0s sub-matrix,
we have at least p linear combinations, each of exactly j of the vectors vi,
all giving the all 0’s vector. This implies that the null space of M (i.e. the
space {x ∈ Fk

2 : Mx = 0}) has at least p non-zero vectors of Hamming weight
exactly j. It is an easy exercise to show that the dimension of such a space
must be at least p1/j . Hence we have

rank(M) ≤ k − p1/j

= k − n(1+γ−1/a)/j

≤ k − n(aγ(1+γ)−γ)/2 , (10.16)

since j ≤ 2/(aγ). On the other hand, by hypothesis we have that every
p × k sub-matrix of A has rank at least (k − O(log n)) and hence we must
have rank(M) ≥ k − O(log n). This contradicts Equation (10.16) for large
enough n.

272 10 List Decoding from Erasures

Hence the matrix B has no p× p monochromatic sub-matrix as claimed.
The claimed construction time for B follows easily from the choice of param-
eters, and the proof is complete. �

Corollary 10.21. Suppose we could prove the result of Theorem 10.18 with a
rate of Ω(εa) for some 1 ≤ a < 2 and a construction time that is polynomial
in N and 1/ε. Then there exists a polynomial time construction of n × n
matrices over {0, 1} which have no monochromatic nb × nb sub-matrix for
some b < 1/2.

As remarked earlier, a polynomial time construction of bipartite Ramsey
graphs with p much smaller than

√
n is a folklore open problem. There is,

however, some hope to beat the “ε2 barrier” without having to confront
some major open problem in constructive Ramsey theory. For our coding
applications we have always been thinking of ε as a small positive constant
(independent of n), and hence we allow for a construction that runs in time
exponential in 1/ε and/or a list size that is exponential in 1/ε. It is an
interesting open question whether this can be exploited to improve the rate
beyond ε2. It will also be interesting to get a better than ε2 rate for binary
codes using some non-linear construction. Such a construction would escape
the confines of the relation to bipartite Ramsey graphs, and thus may not be
very hard to obtain.

10.8 Better Results for Larger Alphabets Using
Juxtaposed Codes

We now proceed to highly erasure list-decodable codes over alphabets which
are slightly larger than binary. We will use the larger alphabet size to get
rates better than the ε2 barrier we highlighted for binary linear codes in the
previous section.

There are two main tools used in our construction. The first one is the
use of pseudolinear codes (as guaranteed by Lemma 10.10) as inner codes
instead of linear codes as in the previous section. The provably better bound
on list size for pseudolinear codes compared to linear codes translates into
some quantitative advantage for the erasure list-decodability of the concate-
nated code. The second tool is the use of symbol juxtaposition to combine
together several binary codes into a single code over a larger alphabet. This
uses a similar approach to and is based on the same intuition as the code
constructions in Section 9.6, where we presented juxtaposed codes with good
list decodability from errors.

10.8.1 Main Theorem

Theorem 10.22. For every ε > 0 and every integer t ≥ 1, there exists a
code family with the following properties:

10.8 Better Results for Larger Alphabets Using Juxtaposed Codes 273

(i) (Rate and alphabet size) It has rate Ω(ε1+1/t/(t2 log(1/ε))) and is de-
fined over an alphabet of size 2t.

(ii) (Construction complexity) A code of blocklength N can be constructed
in NO(ε−1 log(1/ε)) time deterministically and O(log2 N log(1/ε)/ε2+1/t)
time probabilistically.

(iii) (Erasure list-decodability) A code of blocklength N in the family can be
list decoded from up to a fraction (1 − ε) of erasures using lists of size
O(t log(1/ε)) in NO(1/ε) time.

Proof (Sketch): The construction and proof are very similar to those in
Section 9.6.2 (specifically Theorem 9.25) from the previous chapter where we
proved a similar result for the the errors case. Familiarity with the contents
of Section 9.6.2 will be helpful to understand what follows.

Let δ0, δ1, . . . , δt be a sequence in geometric progression with δ0 = ε/2,
δt = 1, and δi/δi−1 = Δ for 1 ≤ i ≤ t. Note that this implies Δ = (2/ε)1/t.

Let m be a large enough integer and let n0 = 2m. Our code C∗ will
be the juxtaposition of t codes Ci, each of which is the concatenation of an
[n0, ki]2mi Reed-Solomon code CRS

i with an (n1, mi)2 pseudolinear code CPL
i ,

where mi = mδi/δ0 and

ki = Θ
(ε · n0

tδi log(1/ε)

)
.

The pseudolinear code CPL
i will have the properties guaranteed by

Lemma 10.10 with the setting σ = δi−1. Hence it will have rate ri = mi/n1 =
Ω(δi−1). Note that each Ci is a binary code of blocklength N

def= n0n1 and
dimension

kimi = Ω
(εn0

tδi log(1/ε)
· δi−1n1

)
= Ω

(εN

tΔ log(1/ε)

)
.

This is independent of i making it possible for the codes Ci to be juxtaposed
together to give C∗. The rate of C∗ is 1/t times the rate of each individual
Ci, and thus

R(C∗) = Ω
(ε

t2Δ log(1/ε)

)
= Ω

(ε1+1/t

t2 log(1/ε)

)
.

Being the juxtaposition of t binary codes, C∗ is a code over an alphabet of
size 2t. This verifies Property (i) claimed in the theorem.

The dominant component in the construction of C∗ is the construction
of the inner codes CPL

i used in the concatenated codes Ci. By Lemma 10.10,
each CPL

i can be constructed in 2O(mi log(1/δi−1)) = 2O(mε−1 log(1/ε)) time
deterministically (since mi = mδi/ε = O(mε−1). It can also be constructed
in O(m2

i log(1/ε)/δi−1) = O(m2ε−2Δ log(1/ε)) time probabilistically. Since
the overall blocklength N = n0n1 = 2mn1, we have m ≤ lg N . Therefore the

274 10 List Decoding from Erasures

constructions times are NO(ε−1 log(1/ε)) for a deterministic construction, and
O(log2 N log(1/ε)/ε(2+1/t)) for a probabilistic construction (that works with
high probability). This proves Property (ii) claimed in the theorem.

It remains to prove the erasure list-decodability property of C∗. Given a
received word r with symbols at a (1− ε)N positions erased, we wish to find
all codewords c ∈ C∗ that agree with r in the unerased positions. Suppose
that c = C∗(x) is any such codeword. Both r and c can be broken up into
n0 blocks of n1 symbols each, corresponding to the n0 inner encodings at
the n0 positions of the outer Reed-Solomon codes. By the same “bucketing”
argument that we used in the proof of Theorem 9.25, we know that there
exists some i∗, 1 ≤ i∗ ≤ t for which the following holds: there exists a subset
B of the n0 blocks, with |B| ≥ n′ def= εn0

2tδi∗
, such that for every block in B at

least a fraction δi∗−1 of positions within that block are not erased in r.
Pick an arbitrary subset B′ of B with |B′| = n′ and consider the list

decoding of each of the n′ inner codes corresponding to the blocks in B′ from
the at most (1− δi∗−1) fraction of erasures. (Here we focus attention on and
use only the i∗’th symbol from each of the N “juxtaposed” symbols from the
received word r.) Each inner decoding can be accomplished by a brute-force
search over all codewords in 2mi ≤ 2m/ε = O(n1/ε

0) time, and in fact this
is the dominant component of the decoding time. By the property of CPL

i∗ ,
each of the n′ inner decodings only outputs a list L

(i∗)
j of O(log(1/δi∗−1)) =

O(log(1/ε)) codewords (or in other words Reed-Solomon symbols for the code
CRS

i∗), for each of the blocks j ∈ B′. By our choice of i∗, each of these lists
must have the “correct” symbol of CRS

i∗ (x).
To finish the decoding, it suffices to be able to list decode CRS

i∗ with
these lists L

(i∗)
j , j ∈ B′, as input and find all messages x such that L

(i∗)
j

contains the j’th symbol of CRS
i∗ (x) for every j ∈ B′. This is exactly the setup

of the list decoding from uncertain receptions we considered in Chapter 6
(specifically, Theorems 6.19 and 6.21). Since the rate of CRS

i∗ is picked to be
O(ε/(tδi∗ log(1/ε))), it follows that one can find all such x in near-quadratic
time by running the algorithm of Theorem 6.21 (with k = ki∗ − 1, n = n′,
� = O(log(1/ε)), and α = 1). Also the number of solutions output will be
at most O(

√
n�/k), which is O(log(1/ε)) for our choice of parameters. The

O(n1/ε
0) time required to decode the inner codes thus dominates the runtime

of the algorithm.
Of course, the algorithm cannot know the value of i∗ in the above descrip-

tion. But, one can run the above decoding procedure for each Ci, 1 ≤ i ≤ t,
and then output the union of the lists output by each of the decodings. This
will give us a list of size at most O(t log(1/ε)) that includes all codewords
that agree with the received word r in every unerased position. This com-
pletes the proof of Property (iii) claimed in the theorem as well. �

10.8 Better Results for Larger Alphabets Using Juxtaposed Codes 275

10.8.2 Improving the Decoding Time in Theorem 10.22

One of the drawbacks of the result of Theorem 10.22 is that the decoding
time is quite high (namely, NO(1/ε)). Incidentally, this was also the case for
the result for errors from Theorem 9.25, though we did not point it out ex-
plicitly then! The high decoding time resulted from the brute-force decoding
of the inner codes. For example, the inner code CPL

t had a dimension of
mδt/δ0 = Ω(m/ε), and decoding it by searching over all codewords requires
2O(m/ε) = NO(1/ε) time. To reduce the decoding time for each inner code
CPL

i , we further juxtapose it with a linear code of Clin
i of the same dimen-

sion and blocklength. This is similar to the approach taken in Lemma 9.15
of Chapter 9. We now briefly review that technique when applied to the set-
ting of erasure codes. Clin

i will be a binary linear code of rate Ω(δi−1) which
is ((1 − δi−1)n1, O(1/δ2

i−1))-list decodable, as guaranteed by Lemma 10.12,
Part (i). The necessary linear codes Clin

i can be constructed within the time
bounds required to construct the codes CPL

i (for both probabilistic and de-
terministic constructions — for deterministic constructions we can use the
derandomization procedure discussed in Section 10.7.3). Hence the asymp-
totic construction time of the codes is not altered by the addition of the linear
component to the inner codes.

The inner decoding now uses the linear component of the received word
to first perform erasure decoding of the codes Clin

i . Owing to the linearity,
this can be accomplished by solving a linear system in O(n3

1) time. By the
erasure list-decodability property of Clin

i , this step will return Li ≤ O(1/δ2
i−1)

messages. It now suffices to check which subset of these Li messages are
consistent under encoding by CPL

i with the pseudolinear component of the
received word. This task can of course be done in time polynomial in n1.

Thus, using this trick all the inner decodings can be performed in
O(n0poly(n1)) = O(N logO(1) N) time. Since the outer Reed-Solomon
decoding, as per the bounds stated in Theorem 6.21, takes at most
O(n2

0 log3 n0ε
−O(1)) time, the overall decoding time is now O(N2ε−O(1) log N)

(since n0 ≤ N/ logN). The juxtaposition with the linear code reduces the
rate by a factor of 2 and also squares the alphabet size. We omit further
details, and below we simply state the final result that can be obtained after
applying this modification.

Theorem 10.23. For every ε > 0 and every integer t ≥ 1, there exists a
code family with the following properties:

(i) (Rate and alphabet size) It has rate Ω(ε1+1/t/(t2 log(1/ε))) and is de-
fined over an alphabet of size 22t.

(ii) (Construction complexity) A code of blocklength N can be constructed in
NO(ε−1 log(1/ε)) time deterministically and in O(log2 N log(1/ε)/ε2+1/t)
time probabilistically.

276 10 List Decoding from Erasures

(iii) (Erasure list-decodability) A code of blocklength N in the family can be
list decoded from up to a fraction (1 − ε) of erasures using lists of size
O(t log(1/ε)) in O(N2ε−O(1) log N) time.

10.9 Concluding Remarks

Our lower bound on R̃lin
L (p) from Theorem 10.11 guarantees the existence of

binary linear code families of rate Ω(ε) which can be list decoded from up to
a fraction (1−ε) of erasures, using lists of size, say O(ε−2). The construction
of Theorem 10.18, however, only achieves a rate of about ε2. Now the result
of Theorem 10.17 implies that for linear code families of positive rate, one
requires a list size of at least Ω(1/ε) to list decode from (1−ε) erasures. This
implies that our concatenated code constructions from Section 10.7 cannot
be improved by the choice of a better linear code as inner code. Moreover,
the connection to bipartite Ramsey graphs from Section 10.7.4 indicates that
our result of Theorem 10.18 might be hard to improve without worsening
some of the other parameters.

In Section 10.8, by resorting to pseudolinear codes at the inner level,
together with the technique of juxtaposed code constructions, we were able
to closely approach the optimal rate of Ω(ε) by allowing a gradual increase
in the alphabet size. These results achieve a very small (about O(log(1/ε)))
list size for list decoding up to a fraction (1 − ε) of erasures. The fact that
this is impossible to achieve with linear codes (Theorem 10.17) is also one of
the surprising results of this chapter.

Below we list some open questions relating to the contents of this chapter.

Question 10.24. Is there a poly(n, 1/ε) time construction of binary linear
codes with the properties guaranteed in Lemma 10.19, namely codes which
have rate close to Ω(ε2) and which are efficiently list decodable up to a frac-
tion (1− ε) of erasures?

Question 10.25. Is there a polynomial time construction of binary codes of
rate Ω(ε2−a) for some a > 0 which are efficiently list decodable up to a
fraction (1− ε) of erasures? More ambitiously, can one construct such codes
with close to the optimal Ω(ε) rate? (We allow for the construction time to
depend exponentially on 1/ε, and the codes to be non-linear provided they
have efficient encoding and decoding algorithms.)

Question 10.26. Is there a polynomial time construction of q-ary codes that
have (the optimal) Ω(ε) rate and which are efficiently list decodable up to a
fraction (1 − ε) of erasures, for some q that is a fixed constant independent
of ε? (Certain constructions of AG-codes achieve the optimal Ω(ε) rate, but
require an alphabet size of O(1/ε2). Our juxtaposed codes achieve a rate of
about Ω(ε1+1/ lg q) and thus approach the optimal Ω(ε) rate for large q.)

10.10 Bibliographic Notes 277

10.10 Bibliographic Notes

The concept of erasure list-decodability seems to have been studied explicitly
for the first time in [89]. Their motivation for studying list decoding under
erasures in turn came from [62, 123], where the role of such codes in results
about the hardness of partial computation of NP-witnesses was highlighted
(more on this in Section 12.2.5 of Chapter 12). The relation between minimum
distance and erasure list-decodability (Proposition 10.7) is folklore and is also
implicit in [89].

The notion of erasure list decoding radius and the rate function R̃L(p)
were first introduced by the author in [78]. The bounds on the corresponding
quantity R̃lin

L (p) for linear codes (namely Theorems 10.11 and 10.16) were
implicitly known in the literature on Generalized Hamming weights. The
specific use of the probabilistic method in the proof of Lemma 10.12 was
inspired by a similar proof in [62].

The concatenated code construction from Section 10.7 appears in [78].
The interesting connection to Ramsey graphs, which indicated the difficulty
of improving our result for binary linear codes, was communicated to us
by Noga Alon [5]. The improvements in rate by resorting to pseudolinear
(as opposed to linear) inner codes, and the idea of code juxtaposition from
Section 10.8, appear in [82].

Interlude

The first two parts of the book have explored the combinatorial and algo-
rithmic aspects of list decoding in detail and have presented list decoding
algorithms that correct a large fraction of errors for certain classical codes as
well as some novel code constructions.

In addition to their inherent interest to the subject of list decoding, some
of the results and techniques developed so far have also found numerous
applications outside the immediate domain of list decoding and even cod-
ing theory. The next couple of chapters provide a glimpse of some of these
applications.

The next chapter will present an application of the techniques similar to
the ones used in Chapter 9 to the construction of codes that are not only
encodable and (unique) decodable in linear time, but also achieve very good
trade-offs between rate and error-correction radius.

Chapter 12 discusses applications of list decoding to problems outside
coding theory. This will include a brief discussion of and pointers to the
reasonably large number of complexity-theoretic applications of list decoding,
as well as some cryptographic applications and an interesting algorithmic
application called “Guessing Secrets”.

After presenting these applications, we will conclude the book with some
closing remarks and a list of open problems.

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 281-281, 2004.
© Springer-Verlag Berlin Heidelberg 2004

11 Linear-Time Codes for Unique Decoding

11.1 Context and Introduction

The goal of this chapter is also to construct codes which can be decoded
from a large, and essentially up to a “maximum” possible, fraction of errors,
with a near-optimal trade-off between rate and error-correction radius. The
difference is that we are now interested in unique decoding as opposed to list
decoding.

The biggest selling point of the codes in this chapter will be the linear-
time encoding and decoding algorithms. Spielman [176] presented asymptot-
ically good binary codes which can be encoded in linear time and also be
(unique) decoded from a small (about 10−6) fraction of errors in linear time.
In this chapter, we will improve this error fraction dramatically, and present
binary codes that can correct a fraction (1/4 − ε) of errors, for arbitrary
ε > 0, which is the maximum possible fraction of errors from which unique
decoding is possible with positive rate. This is because for unique decoding,
the maximum number of errors that can be corrected is limited by half the
minimum distance of the code. Since binary code families of positive rate
have relative distance less than 1/2,1 the half-the-minimum-distance barrier
implies that the maximum possible fraction of errors that can be uniquely
decoded is (1/4 − ε) for binary codes. For codes over large alphabets, the
maximum unique decoding radius is (1/2− ε) (this requires an alphabet size
of Ω(1/ε), though).

We will not only be able to construct asymptotically good codes over
a large (resp. binary) alphabet that can be unique decoded in linear time
from a fraction (1/2− ε) (resp. (1/4− ε)) of errors, but also construct such
codes of near-optimal rate (resp. rate matching those of the best polynomial-
time constructions). Specifically, for every r, 0 < r < 1, and ε > 0, we will
construct codes over an alphabet of fixed size depending only on ε, which are
linear-time encodable and linear-time decodable from a fraction (1− r− ε)/2
of errors. Since relative distance of codes of rate r is at most (1 − r), this
trade-off is optimal, and we have linear-time algorithms to go along with it!
Concatenation of these codes with binary inner codes that lie on the Gilbert-

1This is a well-known bound in coding theory that follows for example from the
“Plotkin bound”, cf. [193, Section 5.2].

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 283-298, 2004.
© Springer-Verlag Berlin Heidelberg 2004

284 11 Linear-Time Codes for Unique Decoding

Varshamov bound yields binary codes that can be encoded in linear time and
decoded up to half the Zyablov bound in linear time. This essentially matches
the performance achieved by polynomial time decodable constructions.

All our constructions share the common thread of using expander-like
graphs as a component, and there is a strong overlap in techniques between
this chapter and portions of Chapter 9 (specifically, Section 9.4). The ex-
pander graphs enable the design of efficient decoding algorithms through
various forms of voting procedures. The presentation in this chapter should
be reasonably self-contained and should allow the reader to read and appreci-
ate the chapter on its own. Though the results of this chapter have no direct
impact for list decoding, we point out that these expander-based techniques
together with more sophisticated analysis methods have led subsequently to
the construction of linear time encodable and list decodable codes as well [83].

Most of the material in this chapter appears in the papers [81, 82], the
second of which was written only after the first version of this work was
submitted. Therefore, the results reported in the thesis originally submitted
to MIT are weaker than the ones stated in this chapter. But the proofs of
the results in [82] are not any harder and yield near-optimal bounds, so we
have chosen to follow the presentation of [82].

Organization: We present the necessary background on expanders first in
Section 11.2. We then present a simpler construction of codes (with weaker
guarantees) that is easier to describe and follow in Section 11.3. This enables
unique decoding a fraction (1/2−ε) of errors with rate Ω(ε2) (which is worse
than the optimal bound of Ω(ε)), and by concatenation gives binary codes
of rate Ω(ε4) to correct a fraction (1/4 − ε) of errors. In Section 11.4 we
present our linear-time “near-MDS” codes with near-optimal trade-offs (that
match the Singleton bound). Finally, linear-time binary codes are obtained
by concatenation of our near-MDS codes with suitable, constant-sized, inner
codes in Section 11.5.

11.2 Background on Expanders

There are several ways in which expander graphs are defined in the liter-
ature. For our application here we will also need some “isoperimetric” or
“pseudorandom” properties offered by expanders, and therefore we use a
spectral definition of expanders based on the second largest eigenvalue of
the normalized adjacency matrix. Under this definition a Δ-regular graph H
on n vertices with adjacency matrix A is an expander if λ(H) < 1, where
λ(H) def= max{λ2, |λn|} is defined to be the second largest eigenvalue in mag-
nitude and 1 = λ1 ≥ λ2 ≥ · · ·λn ≥ −1 are the n eigenvalues of 1

Δ ·A.
The following result relating the second eigenvalue to vertex expansion is

well-known and has appeared in many places (see, for example, Theorem 2.4
of [10, Chap. 9]).

11.3 Linear-Time Encodable and Decodable Codes: Construction I 285

Lemma 11.1. Let H = (V, E) be a Δ-regular graph with n = |V | and λ(H) =
λ, and let T ⊆ V with |T | = bn. Let t = |v ∈ V : N(v) ∩ T = ∅}| be the
number of vertices of H that have no neighbors in T . Then

t ≤ λ2(1− b)n
b

. (11.1)

The above lemma applies to a general graph while we are interested in
bipartite graphs. But this is easily fixed. One can define a n × n bipartite
graph G = (A, B, E′) from the above graph H by letting A, B to be copies of
V and connecting a vertex a ∈ A with b ∈ B iff the corresponding vertices in
V are adjacent in H . We call such a graph G the double cover of H . Together
with the above lemma, this gives us the desired bipartite expanders, stated
in the form of the following corollary.

Corollary 11.2. Let H be a Δ-regular graph on n vertices with λ(H) = λ.
Let G = (A, B, E) be the double cover of H. Then for every subset X ⊆ A

with |X | ≥ bn, we have |Γ (X)| ≥ (1− λ2

b)n where Γ (X) ⊆ B is the set of all
nodes with some neighbor in X.

Expander graphs with λ � 1 also have good isoperimetric properties.
Loosely speaking this means that the fraction of edges between two large
sets of vertices approximately equals the product of the densities of those
sets. The formal lemma, stated below, is folklore (see for example Corollary
2.5 in [10, Chap. 9]).

Lemma 11.3. Let H be a Δ-regular graph with λ(H) = λ < 1. Let G =
(A, B, E) be the double cover of H. Then for every pair of subsets X ⊆ A
and Y ⊆ B, we have

∣∣∣E(X : Y)
Δ|X | − |Y |

|B|
∣∣∣ ≤ λ

√
|Y |
|X | .

Thus a low value of λ achieves both good vertex expansion and isoperimet-
ric properties. It is known, however, that the best value of λ one can hope for
in an infinite family of Δ-regular graphs is 2

√
Δ−1
Δ −o(1). Amazingly enough,

there are explicitly known constructions of an infinite family of Δ-regular
graphs {Gi}i≥1 with lim sup

i→∞
λ(Gi) = 2

√
Δ−1
Δ < 2√

Δ
. These graphs, which

are called Ramanujan graphs, were constructed independently in [131] and
[136].

11.3 Linear-Time Encodable and Decodable Codes:
Construction I

In this section, we present a quite simple (given as starting point the Spielman
code) construction of linear-time codes that enables correction up to the

286 11 Linear-Time Codes for Unique Decoding

maximum possible error fractions (which is (1/2 − ε) for codes over a large
alphabet and (1/4− ε) for binary codes). In the next section we will improve
this construction, but the codes of this section are easier to describe and
elucidate the main idea behind our approach. We would therefore recommend
reading this section before reading the improved constructions in Section 11.4.

11.3.1 Codes with Rate Ω(ε2) Decodable Up to a Fraction
(1/2 − ε) of Errors

Theorem 11.4. For any ε > 0 there is an explicitly specified code family with
rate Ω(ε2), relative distance at least (1 − ε) and alphabet size 2O(1/ε2), such
that a code of blocklength n from the family can be (a) encoded in O(n/ε2)
time, and (b) uniquely decoded from up to a fraction (1/2 − ε) of errors in
O(n/ε2) time.

Proof: We need the following two combinatorial objects for our code con-
struction:

(1) A binary asymptotically good [n, k]2 linear code C, encodable and
uniquely decodable from a fraction γ > 0 of errors in linear time (here γ
is an absolute positive constant). An explicit construction of such a code
is known [176, 175].

(2) A Δ-regular bipartite graph G = (A, B, E) with |A| = |B| = n, such
that:
(a)for every set X ⊂ A with |X | ≥ γn, if Y is the set of neighbors of X

in G, then |Y | ≥ (1− ε)|B|.
(b)for every set Y ⊂ B with |Y | ≥ (1/2 + ε)n, the set X ′ ⊆ A defined by

X ′ = {x ∈ A : x has as many neighbors in B \ Y as in Y } (11.2)

has size at most γn.

A graph as in (2) above with Δ = O(1
γε2) can be obtained from a Ra-

manujan graph (i.e., an expander with second largest eigenvalue O(1/
√

Δ)).
Indeed let H = (V, E′) be a Δ-regular Ramanujan graph with λ(H) = λ =
O(1/

√
Δ). Take G to be the double cover of H . We will prove that G both

the properties (a) and (b) described above. For property (a), we apply Corol-
lary 11.2 with the choice b = γ. This gives that for all X ⊆ A with |X | ≥ γn,
the set Y ⊆ B of all nodes with neighbors in X satisfies

|Y | ≥
(
1− λ2

γ

)
n ≥

(
1−O

(1
Δγ

))
n ≥ (1− ε2)n > (1− ε)n ,

for Δ = Ω(1
γε2).

For the second property (b), assume that |Y | ≥ (1/2 + ε)n and let X ′ be
defined as in (11.2). We need to prove that |X ′| ≤ γn. By the definition of

11.3 Linear-Time Encodable and Decodable Codes: Construction I 287

X ′, we have E(X ′ : Y) ≤ Δ|X ′|/2. Applying the result of Lemma 11.3, we
know that

E(X ′ : Y)
Δ|X ′| ≥ |Y |

n
− λ

√
|Y |
|X ′|

≥
(1

2
+ ε

)
− λ

√
|Y |
|X ′| .

Together with E(X ′ : Y) ≤ Δ|X ′|/2, this implies that

|X ′| ≤ λ2|Y |
ε2

= O
(n

Δε2

)
≤ γn ,

for Δ = Ω(1
γε2). Hence we conclude that the graph G required in (2) above

exists with degree Δ = O(1
γε2) = O(1/ε2), since γ is an absolute constant.

Given the code C and graph G, our final code, call it C′, is constructed as
follows: to encode a message x according to C′, we first encode it into C(x),
and then push symbols of C(x) along the edges of G. The i’th symbol of the
codeword C′(x), for 1 ≤ i ≤ n, comprises of the collection of the symbols
received at the i’th node of the right side B of G. This is the same as the
construction illustrated in Figure 9.2, with the left code being fixed to the
linear-time codes due to Spielman [176].

< 0, 1, 0 >
Expander

1

0

0
1

0
1

Majority symbol =1

Received word for C
with few errors

(C = linear−time Spielman code)

Highly noisy received
word for C’

Each symbol on
left assumes the
majority value of
votes it receives

Each symbol on
right "votes" for
all its neighbors
on the left

Fig. 11.1. The majority voting based decoding algorithm

Since C has constant rate, clearly C′ has rate Ω(1/Δ) = Ω(ε2). Since C
is uniquely decodable up to a fraction γ of errors, its relative distance must

288 11 Linear-Time Codes for Unique Decoding

be at least 2γ, and this together with the expansion property (a) of G clearly
implies that C′ has relative distance at least (1 − ε).

The encoding time for C′ is the same as for C (i.e., linear), plus O(nΔ) =
O(n/ε2). In order to decode a received word z which differs from a codeword
C′(x) in at most a fraction (1/2 − ε) of positions, we first perform the fol-
lowing key voting step, which is illustrated in Figure 11.1: Each node v in A
recovers the bit which is the majority of the neighbors of v in B (ties broken
arbitrarily).

Since z and C′(x) agree on at least (1/2+ ε)n positions, appealing to the
property (b) of the graph G, we conclude that at most γn nodes in A recover
incorrect bits of C(x) in the above voting procedure. Then, by the property
of the code C, we can decode x in linear time. The total decoding time is
again equal to O(n/ε2) for the first stage and then a further O(n) time for
the decoding of C. Hence the total decoding time is O(n/ε2), as claimed. �

11.3.2 Binary Codes with Rate Ω(ε4) Decodable Up to a Fraction
(1/4 − ε) of Errors

In this section we show how to augment the linear-time codes from the pre-
vious section in order to obtain binary codes with linear-time encoding, and
linear-time decoding up to a fraction (1/4− ε) of errors.

Theorem 11.5. For every ε > 0 there is a binary linear code family of
rate Ω(ε4) and relative distance at least (1/2 − O(ε)), such that a code of
blocklength N from the family can be uniquely decoded from up to a frac-
tion (1/4 − ε) of errors in O(N/ε2 + 2O(1/ε4)) time, and can be encoded in
O(N + 2O(1/ε2)) time. The code can be constructed in probabilistic O(1/ε4)
or deterministic 2O(1/ε4) time.

Proof Sketch: The code is constructed by concatenating the code from
Theorem 11.4 with a suitable binary code. Let C′ be the code from the
Theorem 11.4.2 The alphabet size of C′ is Q = 2O(1/ε2). Let C3 be any
[O(lg Q/ε2), lg Q]2 linear code with relative distance at least (1/2−ε). Such a
code can be constructed by a picking random linear code from a “Wozencraft
ensemble” in probabilistic O(1/ε4) time or by a brute-force search in such
an ensemble in 2O(1/ε4) time, cf. Proposition 8.10. We concatenate C′ with
C3 obtaining a binary linear code , say C∗, of blocklength N = O(n/ε4),
rate Ω(ε4) and relative designed distance at least δ

def= (1 − ε)(1/2 − ε) =
2Actually, we will need to make slight changes in the assumptions about the

components used in the construction of C′ in Theorem 11.4, namely in the assump-
tions about the expander graph G. But the construction of C′ itself (given the left
code C and the expander G), as well all its properties claimed in Theorem 11.4,
remain unaltered — we will only pose some stronger requirements on G and the
decodability of C′. We will discuss these and justify how they can be achieved
without any loss in rate later in the proof.

11.4 Linear-Time Codes with Near-Optimal Rate 289

(1/2 − O(ε)).3 Since C′ can be encoded in O(n/ε2) time, the encoding of
C∗ can be performed in O(n/ε4) time (since each encoding by C3 can be
done in 1/ε4 time using a look-up table building which takes a one-time
cost of 2O(1/ε2) time and space). As the overall blocklength of C∗ equals
N = O(n/ε4), the claimed encoding time holds.

It remains to show how to unique decode C∗ from a fraction δ/2 of errors
in linear-time. Since δ = (1 − ε)(1/2 − ε) and ε > 0 is arbitrary, this will
imply the claimed result. This is accomplished by a general technique to
decode concatenated codes called Generalized Minimum Distance (GMD)
decoding due to Forney [60]. This requires a decoding algorithm for the outer
code C′ that can correct any combination of a fraction s of erasures and e
of errors as long as 2e + s ≤ (1 − ε). It is possible to extend the algorithm
from Theorem 11.4 to have this property. We omit the details of this as well
as the workings of GMD decoding now, since we will anyway discuss these
in the next two sections where we give linear-time codes of near-optimal rate
(specifically Theorems 11.8 and 11.10). �

11.4 Linear-Time Codes with Near-Optimal Rate

In this section, we will describe our construction of linear-time encod-
able/decodable codes over large alphabets which are near-MDS and match
the Singleton bound. We first describe the construction over large alphabets,
and will then describe how we can get binary codes by using concatenation
plus GMD decoding.

11.4.1 High-Level View of the Construction

Before delving into the formal construction, we describe the high-level idea
behind the construction (reading what follows with an eye on Figure 11.2
might be useful). Our code is constructed by combining three objects, a
“left” code C, a constant-sized MDS (say, Reed-Solomon) code C̃, and a
suitable bipartite expander graph G (say, with n vertices on each side). The
message will be first encoded by the left code C. The resulting codeword of
C will then be broken into n blocks, each of constant size, and each of these
blocks will be encoded by the Reed-Solomon code C̃. The symbols of the
resulting string will then be redistributed using the edges of the expander G,
the symbols in the encoding of the i’th block being sent to the neighbors of
the i’th node on the left side of G. Now, the final codeword (of length n) is
obtained by “juxtaposing” or “concatenating” the symbols received at each
of the n vertices on the right. The construction scheme is similar in spirit
to earlier expander-based code constructions in [6, 7], and specifically the
construction of near-MDS erasure codes in [7].

3The code C∗ will be linear since C3 is linear and it is easy to check that the
construction from Theorem 11.4 gives an additive code C′.

290 11 Linear-Time Codes for Unique Decoding

Encoding

Encoding

Encoding

a a

< *, *, a, *, * >

it receives
from the left.

of the symbols

Codeword of

broken into
blocks

linear−time

GraphExpander

left code C

juxtaposition

Each symbol of
C is the*

Final code C*

Codeword of the

Reed−Solomon code C

by constant−sized

Each block
is encoded

~

Fig. 11.2. Basic structure of the construction of near-MDS linear time codes. The
“left” code is first broken into blocks and each block encoded by a constant-sized
Reed-Solomon code C̃. Note that the second symbol a of the encoded block is sent
to the second neighbor of the corresponding node of the expander. This is in general
how symbols are redistributed from the left to the right using the expander. On the
right side, the symbol at each position is the juxtaposition of the symbols received
from the neighbors on the left. (For example, in the figure the second position
receives a from its third neighbor on the left, and therefore has a at the third
position of the 5-tuple of symbols that it receives.) This yields the overall encoding,
and we denote by C∗ the code obtained by the combination of all the encoding
steps.

We now elaborate a bit on how we pick each of these components. The
left code C will be a linear-time code of rate very close to one, say, (1 − γ)
for some small γ > 0, which can correct a fraction Θ(γ2) of errors in linear
time. The code C̃ will be a Reed-Solomon code of rate (very close to) r. Its
block length will be equal to the degree D of the expander. For the graph G,
we can take any expander whose second eigenvalue λ is much smaller than
its degree D; in order to get the best parameters (specifically, alphabet size),
we use a Ramanujan graph which satisfies λ = O(

√
D).

The code C̃ and the expander are standard and we just use them “off-
the-shelf”. For the left code C, the existing construction of linear-time en-
codable/decodable codes due to Spielman [176, 175] do not give this directly,

11.4 Linear-Time Codes with Near-Optimal Rate 291

as even to correct a very small fraction of errors, the rate has to be an ab-
solute constant bounded away from 1. However, as Spielman [175] remarks
it is possible to pick parameters differently in his construction and achieve
any rate, though the formal details have not been made explicit anywhere.
Here, we present a new construction which has the property necessary to
us; our construction is obtained by combining ideas from [7] and [201]. Our
construction also achieves a slightly better dependence between the fraction
of errors corrected and the rate (compared to what can be deduced by work-
ing through the construction in [176]); this translates into a slightly better
alphabet size for our overall construction. We discuss this construction next,
before moving on to the construction of the final near-MDS code.

11.4.2 Linear-Time Codes with Rates Close to 1

In this section, we describe a code construction that will serve the role of the
“left code” in the construction scheme of Figure 11.2. The required qualitative
properties from these codes is that they be able to correct a small constant
fraction β of of errors and have rate approaching 1 as β → 0; the exact
dependence of how close the rate is to 1 as a function of the fraction of errors
corrected is not important. In fact it is this trade-off that we will improve to
near-optimal in Section 11.4.3.

Lemma 11.6. For every γ > 0, there is an explicitly specified code of rate
1/(1+γ) over an alphabet of size q = O(1/γ2) such that a code of block length
N in the family can be encoded in O(N/γ) time and can be decoded from a
fraction β = O(γ2) of errors in O(N/γ2) time.

Proof: For infinitely many values of m and for some fixed q = O(1/γ2),
we will construct a code over GF(q) of dimension m and block length N =
(1 + γ)m which can be encoded in linear time and can be decoded from βm
errors in linear time for β = Θ(γ2). The encoding will work in two steps. In
the first step, the message is encoded by a code C1 into a string of length
(1 + 2γ′)m comprising of the m message symbols and 2γ′m check symbols
(we take γ′ = γ/8). This code has the property that given the correct values
to all of the check symbols, an arbitrary set of βm errors in the message
symbols can be corrected. In the second step, the check symbols are further
encoded by a linear-time rate 1/4 code C2 that can correct up to βm errors.
The combined code thus maps m symbols into (1+8γ′)m = (1+γ)m symbols
and can correct up to βm errors. The decoding algorithm for the combined
code from βm errors is the obvious one: first decode C2 to correct any errors
in the check bits, and then decode C1 to correct, using the correct values of
the check bits, the up to βm errors that could exist in the message bits.

For the code C2, we can use the codes due to Spielman which have some
constant rate. Specifically, as stated in [7], there is an explicit such code
C2 over GF(q) of rate 1/4 which can correct a fraction b of errors for some
absolute constant b > 0 that is independent of γ. The qualitative feature that

292 11 Linear-Time Codes for Unique Decoding

is important about C2 is that its rate and fraction of correctable errors both
be absolute constants (independent of γ); the exact values of these constants
are not important and therefore we can get away with just using the original
Spielman code. It remains to describe the code C1. The code C1 must encode
m symbols into (1+2γ′)m symbols such that the encoding can be performed
in linear time and moreover C1 can be decoded from up to βm errors in the
message bits, where β = O(γ′2), in linear time.

Let H be a d-regular bipartite “Ramanujan” expander with m edges and
n = m/d vertices on each side, such that the second largest eigenvalue λ of its
adjacency matrix satisfies λ ≤ 2

√
d. Here d is a constant that is independent

of n, i.e., we use a family of constant-degree expanders (jumping ahead d =
O(1/γ2) will suffice). The m positions of the message to be encoded are
identified with the edges of H . For each vertex v of H , we compute γ′d check
symbols corresponding to the message symbols on edges incident upon v.
These are computed using some systematic MDS code C′ of dimension d,
block length (1 + γ′)d, and which can correct fewer than γ′d/2 errors; for
example we can use a Reed-Solomon code over a field of size O(d). In all, this
gives 2n(γ′d) = 2γ′m check symbols, as required.

It is clear that C1 can be encoded in linear time, since each of the n MDS
codes is of constant-size. We now discuss the linear-time decoding algorithm
for C1 that corrects up to βm errors in the message symbols, given the correct
values of all check symbols. This algorithm and its analysis follows along
the lines of Zemor’s recent improvement [201] of the analysis of Sipser and
Spielman [171]. For completeness sake, we next present the details of this
analysis.

Let the two sides of the bipartition of H be A and B. For each v ∈ A∪B
denote by Ev the set of edges of H incident on v. Let x ∈ GF(q)m be the
portion of the received word corresponding to the m message symbols —
by hypothesis, x is the message vector corrupted by at most βm errors.
Let y ∈ GF(m)γ′m be the vector of the check symbols. Denote by xEv the
projection of x on the d edges in Ev, and by yEv the projection of y to the
γ′d check symbols that correspond to the encoding by the MDS code C′ of
the symbols on the edges in Ev. The decoding algorithm proceeds in rounds,
and in each round does the following in sequence:

(a) (Left wing decoding) For each v ∈ A in parallel, check if there exists a
vector z ∈ GF(q)d within distance γ′d/2 of xEv and whose check bits
agree with yEv ; if so, set xEv to z.

(b) (Right wing decoding) For each v ∈ B in parallel, check if there exists
a vector z ∈ GF(q)d within distance γ′d/2 of xEv and whose check bits
agree with yEv ; if so, set xEv to z.

To analyze the algorithm, by linearity it suffices to consider the case when
the correct message is the all-zeroes string (which also implies that all check
symbols equal 0). Let X = {e : xe
= 0} be the set of edges whose symbols are
in error in the original received word x. For i ≥ 1, let Y (i) (resp. Z(i)) be the

11.4 Linear-Time Codes with Near-Optimal Rate 293

set of edges in error, i.e. edges e so that xe
= 0, after the left wing (resp. right
wing) of the i’th round of decoding (we use the convention Y (0) = Z(0) = X).
Define the set A(i) and B(i) for i ≥ 1 as follows:

– A(i) = {v ∈ A : Ev ∩ Y (i)
= ∅}
– B(i) = {v ∈ B : Ev ∩ Z(i)
= ∅}
Now comes the crucial part of the analysis. Let i ≥ 1 be fixed. For each
v ∈ A(i) (i.e., vertices on the left which are incident to some uncorrected edge
after the left wing decoding of the i’th round), we have |Ev∩Z(i−1)| ≥ γ′d/2,
as otherwise the left wing decoding of the i’th round would have corrected
the fewer than γ′d/2 errors that remained in the edges of Ev. We also have,
for the same reason, |Ev ∩ Y (i)| ≥ γ′d/2 for every v ∈ B(i).

Our goal is to now prove that the size of the A(i)’s and B(i)’s decreases ge-
ometrically, which will imply that the algorithm converges in O(log n) rounds.
Note that this immediately implies only an O(n log n) complexity decoding al-
gorithm, but not a linear upper bound on the decoding time, since each round
itself appears to require linear runtime. However, there is a linear-time imple-
mentation of the algorithm by carefully considering only “relevant” subsets of
A, B which decrease in size geometrically when implementing the successive
decoding rounds. We omit the details here and point the reader, for example,
to [20, Sec. V], where explicit details on this aspect appear.

Now, consider the subgraph of H induced by the edges in Y (i). By defi-
nition, each such edge must be incident upon a vertex in A(i). Furthermore,
every vertex in B(i) is incident upon at least γ′d/2 edges of Y (i). Apply-
ing Lemma 11.7 stated at the end of this section to this situation (with the
choice S = A(i), T = B(i) and Y = Y (i)), the expansion property of the
graph H implies that B(i) has to be small provided A(i) is small. Specifically,
|B(i)| ≤ ζ|A(i)| for some ζ < 1, provided |A(i)| ≤ ρn

(
γ′

4 − 2√
d

)
for some ρ < 1.

This condition will be satisfied provided d ≥ 64/γ′2 and |A(i)| ≤ γ′n/16. By
the same argument, we will also have |A(i+1)| ≤ ζ|B(i)| for i ≥ 1. Hence, we
would have proved the geometrically decreasing property, provided we can
get an upper bound of γ′n/16 on |A(1)| to start with.

By definition each vertex of A(1) is adjacent to at least γ′d/2 erroneous
edges, and hence we have |X | ≥ |A(1)|γ′d/2. Also, by hypothesis there are at
most βm = βnd errors, and so |A(1)| ≤ 2βn

γ′ . Therefore, if β ≤ γ′2/32, then
|A(1)| ≤ γ′n/16 as desired. � (Lemma 11.6)

Lemma 11.7 ([201]). Let ρ < 1 be arbitrary. Let H = (A, B, E) be a d-
regular bipartite expander with n vertices on each side and whose adjacency
matrix has second largest eigenvalue λ ≤ d/3. Let S be a subset of vertices of
A such that |S| ≤ ρn

(
α
2 − λ

d

)
. Let T be a subset of vertices of B and suppose

that there exists a set Y ⊆ E of edges such that:

294 11 Linear-Time Codes for Unique Decoding

(a) every edge in Y has one of its endpoints in S, and
(b) every vertex in T is incident to at least αd edges of Y .

Then, |T | ≤ 1
2−ρ |S|.

11.4.3 Linear-Time Error-Correcting Codes Meeting the
Singleton Bound

We now use the codes from the previous section as the “left code” in our
general construction scheme to obtain linear time encodable/decodable codes
whose rate vs. error-correcting trade-off approaches the Singleton bound (we
call such codes near-MDS codes). Below we state a more general result that
handles both errors and erasures. This will help us deduce the result for
binary codes in the next section very easily, since the GMD algorithm for
concatenated codes that we will employ requires an errors-and-erasures de-
coding algorithm for the outer code.

Theorem 11.8. For every r, 0 < r < 1, and all sufficiently small ε > 0, there
exists an explicitly specified family of GF(2)-linear (also called additive)4

codes of rate r and relative distance at least (1 − r − ε) over an alphabet of
size 2O(ε−4r−1 log(1/ε)) such that codes from the family can be encoded in linear
time and can also be (uniquely) decoded in linear time from a fraction e of
errors and s of erasures provided 2e + s ≤ (1− r − ε).

Proof: We will use the construction outlined in Section 11.4.1 with left code
being the code from Lemma 11.6 for the choice γ = ε/4. Let x be a message
of length m over GF(q) for some constant q (jumping ahead, q will be a
power of two large enough for the left code and the Reed-Solomon code C̃
to exist). The message is first encoded by C to give a string y = C(x) of
length n′ = (1 + ε/4)m over GF(q). We assume, by Lemma 11.6, that C
can correct βn′ errors in linear time for β = O(ε2). The symbols of y will
be broken up into n = n′/b blocks consisting of b symbols each for a block
size b = Θ(1/ε4). Each of these n blocks will undergo encoding by a Reed-
Solomon code C̃ over GF(q) of dimension b and rate r′ = r(1 + ε/4), to give
n blocks B1, . . . , Bn each consisting of Δ = b/r′ symbols over GF(q) (if we
pick q = Ω(r−1ε−4) ≥ Δ, both the left code as well as the Reed-Solomon
code will exist over an alphabet of size q).

Let G = (A, B, E) be a Δ-regular bipartite expander with n vertices on
each side with the following property:

(*) For every subset X ⊂ A with |X | ≥ βn/2 and every Y ⊆ B, we have∣∣∣ |E(X:Y)|
|X|Δ − |Y |

|B|
∣∣∣ ≤ ε/4.

4Recall that a code C over a field of characteristic 2 is said to GF(2)-linear or
additive if x + y ∈ C whenever both x ∈ C and y ∈ C. The codes we construct
have this property, but they are not in general linear over the larger field.

11.4 Linear-Time Codes with Near-Optimal Rate 295

One can show that Ramanujan graphs, namely graphs whose second largest
eigenvalue satisfies λ = O(

√
Δ), of degree Δ = O(1/βε2) = O(1/ε4), give

bipartite graphs with the above property. Explicit constructions of Ramanu-
jan graphs are known [131] and since C, C̃ are explicitly specified as well,
our overall construction is explicit.5 The symbols of the i’th block will be
redistributed to the neighbors of the i’th vertex on the left side of G (the
j’th symbol going to the j’th neighbor of the vertex, for 1 ≤ j ≤ Δ, as per
some arbitrary ordering of the neighbors of each vertex). This gives, for each
vertex on the right side, a collection of Δ GF(q)-symbols obtained from its Δ
neighbors on the left, which, equivalently, can be viewed as a single symbol
over GF(qΔ). The string (of length n) consisting of these symbols forms the
encoding of x by our overall code over GF(qΔ), call it C∗. (Taking another
quick look at Figure 11.2 before reading on might be useful to the reader.)
Rate and alphabet size. This gives a code over an alphabet of size qΔ =
2O(b lg q/r′) = 2O(ε−4r−1 log(1/ε)) and which has rate m/Δ

n = mr′
bn = mr′

n′ = r
(since n′ = (1 + ε/4)m and r′ = r(1 + ε/4)). It is also clear that C∗ has a
linear time encoding algorithm.
Decoding complexity. Using the Property (*) of G, it is also easy to show
that the relative distance of C∗ is at least (1−r−ε/2). In fact, we next prove
that C∗ can be uniquely decoded from a fraction e of errors and s of erasures
provided 2e + s ≤ (1− r − ε).

Let z be a received word for C∗ with a fraction s of erasures and a fraction
e of errors, where 2e + s ≤ (1 − r − ε). Since the relative distance of C∗ is
greater than (1− r − ε), there is a unique message x that is solution to the
decoding problem. Let S be the set of erasures in the received word z, and
let F be the set of errors (i.e., the positions where C∗(x) and z differ). We
have |S| = sn and |F | = en.

Given the received word z, the decoding algorithm proceeds as follows.
In the first step, the word z is used to compute certain “received words” zi,
1 ≤ i ≤ n, for the n encodings by C̃ (corresponding to the n blocks into
which a codeword of C is broken into). This is done as follows. For each
i, j, 1 ≤ i ≤ n and 1 ≤ j ≤ Δ, if the j’th neighbor of the i’th node of
A has an unerased symbol, say ζ ∈ GF(qΔ), then the j’th symbol of zi is
set to the symbol in the appropriate coordinate of ζ (namely, the coordinate
which received that symbol through the expander). If the j’th neighbor of
the i’th node of A has an erased symbol, then we declare an erasure at the
j’th position of zi.

5Here we assume that parameters have been so picked that there is an explicit
Ramanujan graph, eg. the construction of [131], with exactly n vertices. Since there
is a lot of flexibility in the choice of parameters of the left code C and the Reed-
Solomon code C̃, and since the sequences of vertex sizes of known explicit con-
structions of Ramanujan graphs form a dense sequence, this can be easily ensured.
For sake of simplicity, we ignore this issue and simply assume that expanders with
exactly the required number of vertices exist.

296 11 Linear-Time Codes for Unique Decoding

For each i, 1 ≤ i ≤ n, let zi be the received word thus obtained for the
encoding of i’th block. Let si be the fraction of positions in zi which are
erased, and let ei be the fraction of positions in zi which are set to a wrong
symbol. With the zi’s computed, the algorithm continues as follows. For each
i, we run a unique error-erasure decoding algorithm for the Reed-Solomon
code C̃ with received word zi. If it succeeds in decoding, we let yi ∈ GF(q)b be
the message it outputs, otherwise we let yi be an arbitrary string in GF(q)b.
Finally, the decoding is completed by running the linear time unique decoding
algorithm for C on the received word y = 〈y1, y2, . . . , yn〉, and outputting
whatever message x it outputs.

It is clear that the algorithm runs in linear time. We now prove the cor-
rectness of this procedure. We claim that it suffices to prove that the re-
ceived words zi (obtained from the first stage of the decoding that uses the
expander) satisfy 2ei + si < (1 − r − ε/4) for at least (1 − β)n values of
i. Indeed, for any such i, the Reed-Solomon decoder will succeed in finding
the correct block yi (as the relative distance of each Reed-Solomon code is
at least (1 − r(1 + ε/4)) ≥ 1 − r − ε/4). Hence the received word y passed
to the decoding algorithm for C will agree with C(x) entirely on a fraction
(1− β) of the blocks, or in other words y and C(x) will differ in at most βn′

positions. Since the assumed decoding algorithm for C can correct up to a
fraction β of errors, we will correctly find and output the message x.

It remains to prove that 2ei + si < (1− r− ε/4) for all but βn values of i.
Define X ′ ⊂ A to be the set of nodes which have at least a fraction (s + ε/4)
of neighbors in the set S (the set of erasures in the received word z). Also
define X ′′ ⊂ A to be the nodes which have at least a fraction (e + ε/4) of
neighbors in F (the set of erroneous positions in z). It easily follows from the
Property (*) of the expander G that |X ′|, |X ′′| ≤ βn/2.

Now consider any node i ∈ A \ (X ′ ∪ X ′′). It has less than a fraction
(e + ε/4) of neighbors in F . These correspond to the errors in the received
word zi, and hence we have

ei < e + ε/4 for every i ∈ A \ (X ′ ∪X ′′) . (11.3)

A node i ∈ A \ (X ′ ∪X ′′) also has less than a fraction (s + ε/4) of neighbors
in S. These correspond to the erasures in the received word zi, and hence we
have

si < s + ε/4 for every i ∈ A \ (X ′ ∪X ′′) . (11.4)

Since 2e + s ≤ (1 − r − ε) by hypothesis, we have, combining (11.3) and
(11.4) that 2ei + si < (1 − r − ε/4), for each i ∈ A \ (X ′ ∪ X ′′). Since
|X ′|, |X ′′| ≤ βn/2, we have proved that the condition 2ei + si < (1− r− ε/4)
holds for all but a fraction β of i’s in the range 1 ≤ i ≤ n. This completes
the proof of correctness of the decoding algorithm. �

11.5 Linear-Time Encodable Binary Codes Meeting the Zyablov Bound 297

11.5 Linear-Time Encodable Binary Codes Meeting the
Zyablov Bound

We now construct binary codes which have excellent rate vs. error-correction
trade-off and further have linear time encoding and decoding algorithms.
Our codes meet the Zyablov bound which is the best trade-off known with
reasonable construction complexity (and the best known for concatenated
codes).

Our code constructions are obtained by concatenating the near-MDS
codes from Theorem 11.8 with a binary inner code which meets the Gilbert-
Varshamov bound. Such a code can be constructed by picking a linear code
at random and checking that it has the necessary distance property, or a
deterministic construction can be obtained by searching for the inner code
(since it is of constant size, this takes only O(1) time). Linear time encoding is
clear, and for decoding we use Generalized Minimum Distance (GMD) decod-
ing [60], which decodes a concatenated code up to the “product bound” (i.e.,
half the product of the designed distances of the outer and inner codes) by
running several instances of the errors-and-erasures algorithm for the outer
near-MDS code. The number of such runs needed is bounded from above
by half the distance of the inner code and therefore by a fixed constant as
the inner code is of constant size. Since each run takes linear time by Theo-
rem 11.8, the overall decoding time is linear. The statement we need about
GMD decoding is formally stated below — a proof appears in Appendix A.

Proposition 11.9. Let Cout be an (N, K)Q code where Q = qk and let Cin

be an (n, k)q code with minimum distance at least d. Let C be the (Nn, Kk)q

code obtained by concatenating Cout with Cin. Assume that there exists an
algorithm running in time Tin to uniquely decode Cin up to less than d/2
errors. Assume also the existence of an algorithm running in time Tout that
uniquely decodes Cout from S erasures and E errors as long as 2E + S <
D̃ for some D̃ ≤ dist(Cout). Then there exists an algorithm A running in
O(NTin + dTout) time that uniquely decodes C from any pattern of less than
dD̃
2 errors.

Using the above result for concatenated codes with outer codes from The-
orem 11.8 and inner code being one of the appropriate dimension that meets
the Gilbert-Varshamov bound, we get our result for linear-time binary codes
below.

Theorem 11.10. For every ε > 0 and for any code rate 0 < R < 1, there
exists a family of binary linear concatenated codes of rate R which can be
encoded in linear time and can be decoded in linear time from up to a fraction
e of errors, where

e ≥ max
R<r<1

(1− r − ε)H−1(1−R/r)
2

(11.5)

298 11 Linear-Time Codes for Unique Decoding

(H−1(y) is defined to be the unique x in the range 0 ≤ x ≤ 1/2 that sat-
isfies H(x) = y). Every code in the family is explicitly specified given a
constant sized binary linear code which can be constructed in probabilistic
O(ε−4 log(1/ε)) or deterministic 2O(ε−4 log(1/ε)) time.

The bound of Equation (11.5) is half the Zyablov bound [202], and thus
these codes match the best error-correction performance known for construc-
tive binary concatenated codes. We remark that the first explicit construction
of codes meeting the Zyablov bound for all rates was due to Shen [164]. These
were based on certain algebraic-geometric codes as outer codes and the en-
coding and decoding times were at least quadratic in the block length.

11.6 Bibliographic Notes

The simple scheme of using expanders to increase the distance of codes we
used in Section 11.3 first appeared in [6]. The majority voting based decoding
algorithm for such codes was given in our joint work with Indyk [81]. The
basic scheme that was described in Section 11.4.1 first appeared in [7] where
they used it to construct linear-time codes for recovery from erasures. The
results of Theorem 11.8 and Theorem 11.10 first appeared in our joint work
with Indyk [82]. This paper [82] also contained some results on list decoding
that were described in Chapters 9 and 10 — the results on unique decoding
alone, together with improvements that attain the Blokh-Zyablov bound as
well as the Forney exponent for decoding under the binary symmetric channel,
appear in a journal paper [85].

We saw in this chapter an instance of how techniques developed for list de-
coding are useful also for new, powerful results on unique decoding. Another
instance of this is the work of Guruswami and Indyk [84] on a probabilis-
tic construction of efficiently decodable binary linear codes that meet the
Gilbert-Varshamov bound — specifically, they used a concatenation scheme
with an outer list-decodable code to get binary codes on the GV bound for
low rates together with a polynomial time algorithm to perform decoding up
to half the distance.

12 Sample Applications Outside Coding

Theory

An ounce of application is worth a ton of abstraction.
- Booker’s Law

We now move on to provide a sample of some of the applications which both
combinatorial and algorithmic aspects of list decoding have found in contexts
outside of coding theory. As it turns out, by now there are numerous such
applications to complexity theory and cryptography. Hopefully, by providing
a peek into some of these applications, this chapter will not only highlight
the importance of list decoding to these areas, but also give a flavor of why
the notion of list decoding perfectly fits the ball in several of these situations.
Except for a few of the applications where we will present formal theorem
statements and/or proofs, the nature of this chapter is more survey-like, and
we will only provide a brief high-level discussion of the applications. But
in cases where we only sketch an application, we will provide the relevant
pointers where the interested reader can find more details.

We actually begin this chapter with an application of list decoding to
an algorithmic question, before moving on to the complexity-theoretic and
cryptographic applications. The algorithmic problem, called “Guessing Se-
crets”, is discussed in detail in Section 12.1 (the results of this section ap-
pear in a recent paper [9]). This will be followed by a survey of the several
complexity-theoretic applications in Section 12.2. Finally, we will discuss a
few cryptographic applications of list decoding in Section 12.3.

12.1 An Algorithmic Application: Guessing Secrets

Under the familiar “20 questions” game a player, say B, tries to discover the
identity of some unknown secret drawn by a second player, say A, from a
large space of N secrets, by asking binary (Yes/No) questions about the secret
to A (cf. [101]). The assumption is that A answers each question truthfully
according to the secret he picked. The goal of B is of course to recover the
secret by asking as few questions as possible. If the N secrets are associated
with �lg N�-bit strings, then clearly �lg N� questions are both necessary and
sufficient to discover the secret.

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 299-327, 2004.
© Springer-Verlag Berlin Heidelberg 2004

300 12 Sample Applications Outside Coding Theory

Now, consider the following variant of the above game. Under this vari-
ant, the player A picks not one, but a set of k secrets, for some k ≥ 2. For
each question asked by B, A gets to adversarially choose which one of the
k secrets to use in supplying the answer, but having made the choice must
answer truthfully according to the chosen secret. This variant was intro-
duced by Chung, Graham and Leighton in [38], and they called the problem
“Guessing Secrets”. In this situation, what is the best strategy for B, and
how many questions does it take in the worst-case for B to “find” the se-
crets? In addition to being an interesting “puzzle”, secret guessing problems
of this type have apparently arisen recently in connection with certain In-
ternet traffic routing applications (cf. [38]). Moreover, problems of a related
nature have been studied in the literature under the label of separating sys-
tems (see [158, 40] and references therein), and have been applied in different
areas of computer science such as technical diagnosis, constructions of hash
functions, and authenticating ownership claims. The focus of much of this
line of work has been combinatorial, and our work appears to be the first
to present non-trivial algorithms to deal with (certain kinds of) separating
systems. Specifically, in this section we present an algorithmic solution using
list decoding to a problem left open by the work of [38] for the case of k = 2
secrets. The details will be made clear shortly.

12.1.1 Formal Problem Description

We first restrict ourselves to the case k = 2 when there are only two secrets.
This is already a non-trivial case, and as we shall see one where a very
satisfactory solution exists to the guessing secrets problem. In this case, A
has a set X = {x1, x2} of two secrets, chosen from a universe U of N possible
secrets. We now proceed to precisely formulate the algorithmic problem that
B wishes to (and can hope to) solve (the reader familiar with the paper
[38] probably already knows the formal definition, and can skip the next few
paragraphs).

Note that A can always choose to answer according to the secret x1, and
thus B can never hope to learn with certainty more than one of A’s secrets.
Moreover, a moment’s thought reveals that B cannot even hope to pin down
with certainty one secret and claim that it must be one of A’s secrets. This
is because A could pick there secrets {x1, x2, x3} and answer each question
asked by B according to the majority vote of the answers corresponding to
x1, x2, x3. For such a strategy, irrespective of the number of questions B
asks, A can always “justify” any subset of two of these secrets as the set X
he picked.

In light of these, it turns out that the best that B can hope for is the
following: For every set of two disjoint pairs of secrets X = {x1, x2} and
Y = {x3, x4} where the xi’s are all distinct, rule out one of X or Y as the set
which A picked. An instructive way to visualize this requirement is in terms
of graphs. Let KN denote the complete graph on the universe U of N secrets.

12.1 An Algorithmic Application: Guessing Secrets 301

View a pair of secrets X = {x1, x2} as an edge (x1, x2) of KN . A question is
simply a function F : U → {0, 1}, and the answer to it naturally induces a
partition U = F−1(0)∪F−1(1). If A answers question F with a bit b ∈ {0, 1},
then we know that the set X which A picked must satisfy X∩F−1(1−b) = ∅,
and hence B can “eliminate” all edges within the subgraph of KN spanned
by F−1(1 − b). Stated in this language, the goal of B is to ask a series of
questions by which he can eliminate all edges except those in a set W that
contains no pair of disjoint edges.

Now, there are only two possibilities for such a surviving set W . Either
W must be a “star”, i.e., a set of edges all sharing a common x0, or W must
be a “triangle”, i.e., the set of three edges amongst a set {x1, x2, x3} of three
secrets. In the former case, B can assert that x0 must be one of A’s secrets.
In the latter case, B can assert that the secret pair of A is one of (x1, x2),
(x2, x3), or (x3, x1). In the sequel, when we use the phrase “find the secrets”
we implicitly assume that we mean finding the underlying star or triangle
as the case may be. We also use the phrase “solve the 2-secrets problem” to
refer to the task of finding the underlying star or triangle.

Related Work: Independent of our work, Micciancio and Segerlind [141]
presented a different strategy with the optimal O(log N) questions together
with an O(log2 N) time algorithm to recover the secrets. The difference be-
tween their result and ours is that our questions are oblivious or non-adaptive,
where as in the strategy of [141], B picks the questions adaptively, depending
upon A’s answers to previous questions. On the other hand, their strategy
uses only 4 logN+3 questions, which in fact matches the best known existence
results due to [38], while in addition providing an efficient secret recovery al-
gorithm. The constant in front of logN in our O(log N) bound for number
of questions is perhaps much worse. Thus the results of [141] are incompa-
rable to ours. We elaborate further on adaptive and oblivious strategies and
motivate why oblivious strategies are interesting next.

Oblivious vs. Adaptive Strategies: There are two possible strategies that
one can consider for B: adaptive and oblivious (also called non-adaptive). For
adaptive strategies each question of B can depend on A’s answers to the
previous questions. For oblivious strategies B must fix the set of questions
to be asked right at the outset and be able to infer the secrets just based on
A’s answers to those fixed questions.

Definitely, adaptive strategies seem more natural for a “20 questions” kind
of set-up. However, oblivious strategies have the merit of being easy to play
(and being more democratic in terms of different players’ abilities), since one
just has to read out a fixed pre-determined set of questions. Moreover, as we
shall see, it is possible to do surprisingly well using just oblivious strategies.
In fact, it turns out that there exist oblivious strategies that find the secrets
using just O(log N) questions, which is only a constant-factor off the obvi-
ous lower bound of log N on the number of necessary questions. Moreover,
the quest for oblivious strategies runs into some intriguing combinatorial

302 12 Sample Applications Outside Coding Theory

questions, and leads us, quite surprisingly, to list decodable codes! We fo-
cus exclusively on oblivious strategies here. (See the work of [38] for some
lower and upper bounds on the number of questions required by adaptive
strategies.)

A probabilistic construction shows that O(log N) questions are sufficient
to solve the 2-secrets problem [38]. But this only proves the existence of good
strategies and the questions are not explicitly specified. In the next section,
we discuss how certain binary codes give explicit oblivious strategies.

12.1.2 An Explicit Strategy with O(log N) Questions

A Characterization of Oblivious Strategies Using Separating Codes
An oblivious strategy for B is simply a sequence F of n Boolean functions
(questions) fi : [N] → {0, 1}, 1 ≤ i ≤ n. We say a strategy solves the 2-secrets
guessing problem if the answers to the questions fi bring down the possible
pairs of secrets to a star or a triangle.

For each secret x ∈ [N], we denote the sequence of answers to the ques-
tions fi on x by C(x) = 〈f1(x), f2(x), . . . , fn(x)〉. We suggestively call the
mapping C : [N] → {0, 1}n thus defined as the code used by the strategy.
There is clearly a one-one correspondence between oblivious strategies F and
such codes C (defined by fi(x) = C(x)i, where C(x)i is the i’th bit of C(x)).
Hence we will from now on refer to a strategy F using its associated code C.

We say that a code C is (2, 2)-separating (or simply, separating) if for
every 4-tuple of distinct secrets a, b, c, d ∈ [N], there exists at least one value
of i, 1 ≤ i ≤ n, called the discriminating index, for which C(a)i = C(b)i
=
C(c)i = C(d)i. Note that if B asks questions according to a separating code
C, then for every two disjoint pairs of edges (a, b) and (c, d), B can rule out
one of them based on the answer which A gives on the i’th question, where i is
a discriminating index for the 4-tuple (a, b, c, d). In fact it is easy to see that
the (2, 2)-separating property of C is also necessary for the corresponding
strategy to solve the 2-secrets guessing game.

This implies the following characterization for the existence of oblivious
strategies for the 2-secrets guessing game.

Lemma 12.1. There exists a (2, 2)-separating code C : [N] → {0, 1}n if and
only if there exists an oblivious strategy for B using n questions that solves
the 2-secrets guessing problem for a universe size of N .

Hence the problem of finding a small set of questions to solve the 2-secrets
problem reduces to the task of finding a good (2, 2)-separating code. There
is a reason why we called these objects “codes” since the following result
states that any error-correcting code with a certain property is also a (2, 2)-
separating code. We will assume without loss of generality that N = 2m so
that we can conveniently view each secret as an m-bit binary string. The
separating code C then encodes an m-bit string into an n-bit string.

12.1 An Algorithmic Application: Guessing Secrets 303

Lemma 12.2. Let C be an [n, m]2 binary linear code with minimum distance
d and maximum distance (i.e., the maximum number of coordinates where
two distinct codewords differ) equal to m1. Assume further that d, m1 satisfy
the condition d > 3m1

4 . Then, C is a (2, 2)-separating code. If the constraint
of linearity is removed, then an (n, m)2 binary code C is (2, 2)-separating if
d > m1

2 + n
4 .

The above lemma is proved in the work of Cohen, Encheva, and
Schaathun [40]. The result for linear codes had been previously proved by
Segalovich [158]. The result for non-linear codes can be strengthened and in
fact a code C is (2, 2)-separating provided d > n/2 (cf. [9]).

There is a big advantage in using linear codes C for B’s strategy, since then
each question simply asks for the inner product over GF(2) of the secret with
a fixed m-bit string. Thus all questions have a succinct description, which
is not the case for general non-linear codes. Hence, we focus exclusively on
strategies based on linear separating codes from now on.

Construction of Good Linear Separating Codes

Definition 12.3 (ε-biased codes). A binary linear code of blocklength n is
defined to be ε-biased if every non-zero codeword in C has Hamming weight
between (1/2− ε)n and (1/2 + ε)n.

Now Lemma 12.2 implies the following separation property of ε-biased
codes.

Corollary 12.4. If a binary linear code C is ε-biased for some ε < 1/14,
then C is a (2, 2)-separating code.

Proof: Follows from Lemma 12.2 since (1/2− ε) > 3
4 · (1/2+ ε) for ε < 1/14.

�
Thus, in order to get explicit (2, 2)-separating codes (and hence, an ex-

plicit strategy for the 2-secrets guessing game), it suffices to explicitly con-
struct an ε-biased code for some ε < 1/14.

A simple explicit construction of ε-biased codes can be obtained by con-
catenating an outer Reed-Solomon code with relative distance (1− 2ε) with
an inner binary Hadamard code. It is easy to see that all non-zero code-
words have relative Hamming weight between (1/2 − ε) and 1/2, and thus
this gives an ε-biased space. This construction encodes m bits into O(m2/ε2)
bits. Other explicit constructions of ε-biased codes of dimension m and block-
length O(m2/ε2) are also known (cf. [8]). In fact, the explicit construction of
a secret guessing strategy with O(log2 N) questions in [38] is based on one of
the ε-biased codes from [8]. All these constructions suffer from the drawback
of needing Ω(log2 N) questions, and this means they provide a strategy with
O(log2 N) questions, while we would like to achieve the optimal O(log N)
questions.

304 12 Sample Applications Outside Coding Theory

But, there are also known ways to achieve ε-biased codes with blocklength
O(m/εO(1)). For example, one can use a concatenated scheme with outer code
any explicitly specified code with relative distance (1−O(ε)) over a constant
alphabet size (that depends on ε), and inner code itself being a Reed-Solomon
concatenated with Hadamard code. Specifically, one can use for the outer code
the construction from [6] that achieves rate Ω(ε) and alphabet size 2O(1/ε).
It is easy to check that this gives an explicit [O(m/ε4), m]2 ε-biased code.
A better choice of inner code can be used to bring down the blocklength to
O(m/ε3) [6], but this is not very important to us since this will only improve
the number of questions by a constant factor.

We therefore have:

Lemma 12.5 ([6]). For any ε > 0, there exists an explicitly specified family
of constant rate binary linear ε-biased codes.

Applying the above with any ε < 1/14, and using the connection to
separating codes from Corollary 12.4 and the result of Lemma 12.1, we get
the following:

Theorem 12.6. There is an explicit oblivious strategy for the 2-secrets guess-
ing game that uses O(log N) questions where N is the size of the universe
from which the secrets are drawn.

12.1.3 An Efficient Algorithm to Recover the Secrets

The construction of an explicit strategy using O(log N) questions is not dif-
ficult, and follows rather easily once one realizes the connection to ε-biased
spaces. However, a fairly basic and important point has been ignored so far
in our description. We have only focused on strategies that “combinatori-
ally” limit the possible pairs of secrets to a star or a triangle. But how can
B figure out the star or triangle as the case may be, once he receives the
answers to all the questions? One obvious method is to simply go over all
pairs of secrets and check each one for consistency with the answers. By the
combinatorial property of the strategy, we will be left with only a star or
a triangle. The disadvantage of this approach, however, is that it requires
O(N2) time. We would ideally like to have a strategy to recover the secrets
that runs in poly(log N) time, since we would like to have a runtime which
is polynomial in the number of bits in the secret. Strategies with such an
efficient secret recovery algorithm are called invertible strategies in [38]. In
[38], the authors mention an invertible strategy for the 2-secrets guessing
game, attributed to Lincoln Lu, which uses O(log3 N) questions to find the
star/triangle in O(log4 N) time. Note, however, the number of questions is
much larger than O(log N). The problem of finding an invertible strategy
that uses only O(log N) questions was left unanswered in [38]. Independent

12.1 An Algorithmic Application: Guessing Secrets 305

of our work, [141] answered this question by presenting an adaptive invert-
ible strategy using only O(log N) questions, together with an O(log2 N) time
algorithm to recover the secrets.

In this section, we present a connection between list decoding and the 2-
secrets guessing game. Using this connection, we are able to give an invertible
strategy that uses only O(log N) questions. The time to recover the secrets
(i.e., the triangle or a succinct representation of the star) is O(log3 N). We
stress that, unlike the result of [141], our strategy is oblivious, and is therefore
incomparable to their result (it is not strictly better because the constants
in front of the log N in the number of questions and the time needed to find
the secrets are worse in our construction). Details on the connection to list
decoding and our construction follow.

Connection to List Decoding

Lemma 12.7. Suppose that C is a [cm, m]2 binary linear code which is ε-
biased for some constant ε < 1/14. Suppose further that there exists a list
decoding algorithm for C that corrects up to a fraction (1/4+ε/2) of errors in
time O(T (m)). Then, C is a (2, 2)-separating code which gives a strategy to
solve the 2-secrets guessing game for a universe size N = 2m in O(T (lg N)+
lg3 N) time using c lg N questions.1

Proof: Let C be a code as in the statement of the lemma and assume that B is
using C for its strategy. Let X = {x1, x2} be the set which A claims he picked
after giving all the answers. Let the set of answers be a = (a1, a2, . . . , an).
Then for each i, we must have either C(x1)i = ai or C(x2)i = ai since A is
supposed to answer each question according to one of x1 or x2. Now by the
property of C, we have C(x1)i = C(x2)i for all i ∈ A for some set A ⊆ [n] of
size at least (1/2 − ε)n. For each i ∈ A we have C(x1)i = C(x2)i = ai, and
for each i /∈ A, exactly one of C(x1)i and C(x2)i equals ai. It follows that
either C(x1) or C(x2) is within Hamming distance (n− |A|)/2 of a; assume
without loss of generality that it is C(x1). Then

Δ(a, C(x1)) ≤ n− |A|
2

≤ (1/2 + ε)
n

2
=
(1

4
+

ε

2

)
n .

The algorithm for B to recover the secrets (i.e., the triangle or the star)
after receiving the answer vector a is as follows.

1. Perform list decoding of the code C using the assumed algorithm to find
the set, say S, of all x ∈ {0, 1}m that satisfy Δ(a, C(x)) ≤ (1

4 + ε
2)n.

1The lg3 N component in the runtime comes from the time it takes to solve an
O(n) × O(n) linear system, where n = lg N . We can therefore replace the runtime
by O(T (log N) + M(lg N)) where M(n) is the time taken to multiply two n × n
matrices over GF(2) (which is asymptotically the same as the time required to solve
an O(n) × O(n) linear system over GF(2)). To keep things simple, we simply use
an O(lg3 N) time bound instead of O(M(lg N)) for this task.

306 12 Sample Applications Outside Coding Theory

2. For each x ∈ S returned by the list decoding algorithm in the previous
step, do the following. Compute A = {i : C(x)i = ai}, and perform an
erasure list decoding of the received word a when all of its symbols in
positions in A are erased. In other words find (some representation of)
the set Sx of all x′ for which C(x′)i = ai for each i ∈ [n] \ A. If Sx is
empty, then remove x from S.

3. Return the set of unordered pairs {(x, x′) : x ∈ S, x′ ∈ Sx} as the final
set of all possible feasible pairs.

We now argue the correctness of the algorithm. First note that any pair
returned by the algorithm is a proper solution to the guessing secrets. This
is because the set Sx consists of precisely those secrets that could form the
other secret in a pair with x so that the resulting pair will be “consistent”
with the answers a. We next prove that any pair (x, x′) which is a consistent
solution to the 2-secrets problem for the answers a, will be found by the
algorithm. Appealing to (2, 2)-separation property of C (which is implied by
Corollary 12.4 since C is ε-biased for some ε < 1/14), the above two facts
imply that the final set of pairs will either be a triangle or a star.

If a pair (x, x′) is consistent with a, then we know by the initial arguments
in this proof that min{Δ(a, C(x)), Δ(a, C(x′))} ≤ (1/4+ε/2)n. Assume with-
out loss of generality that Δ(a, C(x)) ≤ (1/4 + ε/2)n. Then, x will be found
as part of the set S is the first list decoding step of the above algorithm.
Now for each i such that C(x)i
= ai, we must have C(x′)i = ai, or otherwise
(x, x′) would not be a consistent pair for the answers a. Hence x′ will be a
solution to the erasure decoding performed in the second step. It follows that
x′ ∈ Sx and that (x, x′) will be output by the algorithm, as desired.

Now we move on to the runtime analysis of the algorithm. By the hypoth-
esis of the lemma, the first list decoding step can be performed in O(T (m))
time. Moreover, the size of the list S returned will be bounded by an absolute
constant. This follows from the Johnson bound (cf. Theorem 3.1, Chapter 3),
which for binary codes states that list decoding to a fraction α/2 of errors in
a code of relative distance δ/2 when α < 1−√

1− δ, requires lists of size at
most (α2 − 2α + δ)−1. Applying this with α = 1/2 + ε and δ = 1− 2ε, gives
that the list size will be at most (ε2 − 3ε + 1/4)−1, which is at most 24.5
for ε < 1/14. Hence we will have |S| ≤ 24 and therefore the second erasure
decoding step will only be performed for O(1) choices of x.

For the second step we critically use the fact that C is a linear code, and
hence erasure list decoding amounts to finding all solutions to a linear system.
The set Sx, therefore, is either empty or the coset of a linear subspace, say
Wx, of Fm

2 , and in the latter case can be represented by one solution together
with a basis for Wx. Hence an O(m2) size representation of each non-empty
Sx can be computed in the time needed to solve a linear system, which is
certainly O(m3).

Hence the above algorithm finds either the triangle or the star of all pairs
of secrets consistent with the answer vector a in O(T (m) + m3) time. Note

12.1 An Algorithmic Application: Guessing Secrets 307

that in the case when it outputs a star, the number of pairs could be quite
large (as high as (N−1) in case the answer vector a exactly matches C(x) for
some secret x). The algorithm exploits the fact that the non-hub vertices the
star, being the set of solutions to a linear system, can be described succinctly
as the coset of a linear space. �
Remark: We stress here that the use of list decoding in the above result is
critical and unique decoding does not suffice for the above application. This is
because for any pair (x, x′) which is consistent with a, we are only guaranteed
that one of x or x′ is within Hamming distance (1/4+ε/2)n from a. Thus, we
need to perform decoding up to a radius that is a fraction (1/4 + ε/2) of the
block length. Therefore, if we were to perform unique decoding, we would
need a relative distance of (1/2 + ε), which is known to be impossible for
binary codes unless they just have a constant number of codewords which is
not very useful (this is a standard result in coding theory called the Plotkin
bound). Also, note that after the list decoding algorithm finds the set S of
codewords close to a, the application gives a natural post-processing routine
to prune the list and actually zero down the possibilities to the true solutions.
This will also be a characteristic of several of the applications of list decoding
discussed in this chapter.

The Final Result Using Specific List Decodable Codes We now prove
that explicit codes with the property needed in Lemma 12.7 exist, and thus
conclude our main algorithmic result about the 2-secrets guessing game. The
following result is quite standard and can be proved easily using techniques
from Chapter 8 on concatenated codes. The only new element is the require-
ment of an ε-biased code, but as we shall see this necessitates no significant
change in the proof technique.

Lemma 12.8. For every positive constant α < 1/2, the following holds. For
all small enough ε > 0, there exists an explicit asymptotically good family of
binary linear ε-biased codes of which can be list decoded up to a fraction α of
errors in O(n2(log n

ε)O(1)) time.

Proof: (Sketch) We only sketch the proof since it is by now quite routine.
Given α < 1/2, we pick ε = O((1/2 − α)2). The code construction will be
the concatenation of an outer Reed-Solomon code CRS of rate smaller than ε
with inner code Cin being an explicitly specified ε/2-biased binary linear code
(such a code exists by Lemma 12.5). It is clear that the resulting concatenated
code, say C, has relative distance at least (1− ε)(1/2− ε/2) > 1/2− ε, and
maximum relative distance at most 1 · (1/2 + ε/2) < 1/2 + ε. Hence C is
definitely an ε-biased code.

Assume that the Reed-Solomon code be defined over GF(2�) and has
blocklength n0 = 2�. Let the blocklength of Cin be n1. The blocklength
of C is then N = n0n1. To list decode a received word r ∈ Fn

2 , we first
divide r into n0 blocks r1, r2, . . . , rn0 corresponding to the n0 inner encodings,

308 12 Sample Applications Outside Coding Theory

where each ri ∈ F
n1
2 . Each of the ri’s is decoded by brute-force to produce

a list Li of all ζ ∈ GF(2�) for which Δ(Cin(ζ), ri) ≤ βn1, for some β where
α < β < 1/2. Since δ(Cin) ≥ 1/2 − ε and α = 1/2 − Ω(

√
ε) (by our choice

of ε), it follows using Johnson bounds for list decoding from Chapter 3, for
example using Theorem 3.1, that for each i, |Li| = O(1/ε). Now if x is such
that Δ(C(x), r) ≤ αN , then by an averaging argument for at least a fraction
α/β of i’s in the range 1 ≤ i ≤ n0, we must have CRS(x)i ∈ Li. Therefore, to
finish the list decoding, it suffices to list recover the outer Reed-Solomon code
to find all x for which CRS(x) has an element from Li at the i’th position
for at least αn0/β values of i. If the rate of CRS is at most O(α2ε/β2),
this can be accomplished in O((n0/ε)2 log3 n0) time using the Reed-Solomon
list decoding algorithms from Chapter 6 (for example, the version stated in
Theorem 6.21). This completes the proof of the lemma. �

Applying the above result with α = 1/4 + 1/28 = 2/7 and any ε < 1/14,
gives an explicit construction of the codes which were needed in Lemma 12.7,
with a quadratic list decoding algorithm. The O(lg3 N) time required to
perform the “simple, clean-up” erasure decodings in Lemma 12.7 therefore
dominates the overall time to recover the triangle or star of secrets. This gives
our main result of this section, which achieves the optimal (up to constant
factors) number of questions together with a poly(log N) algorithm to recover
the secrets.

Theorem 12.9 (Main Result on Guessing Secrets [9]). For the guessing
secrets game between players B and A with 2 secrets picked out of a universe
of size N , there exists an explicit oblivious strategy for B to discover the
underlying star or triangle of possible pairs of secrets, that requires O(log3 N)
time and uses O(log N) questions.

12.1.4 The Case of More than Two Secrets

One can also consider the situation when the player A has k > 2 secrets. In
this case, stated in the same graph-theoretic language that we used to describe
the 2-secrets problem, the goal of B would be to find a k-uniform hypergraph
H with vertex set being the N secrets with the property that every two
hyperedges of H intersect. Let us call such a hypergraph an intersecting
hypergraph.

Unlike the case of graphs, where there were only two classes of such graphs,
namely a triangle or a star, the situation for k-uniform hypergraphs is much
more complicated. A classification of intersecting k-uniform hypergraphs is
known for k = 3 (see [38] for pointers related to this), but is open for k > 3.
Nevertheless, there exist explicit strategies which will allow B to “combina-
torially” reduce the possibilities to an intersecting hypergraph, even though
we do not know any method for B to actually find some representation of this
hypergraph short of trying out all k element subsets of secrets and pruning

12.1 An Algorithmic Application: Guessing Secrets 309

out the “inconsistent” ones. This follows from a connection of the k-secrets
guessing problem to the study of 2k-universal families of binary strings. The
latter problem concerns finding a subset S ⊂ {0, 1}N of as small size as
possible with the property that for every subset of 2k indices i1, i2, . . . , i2k

and every (a1, a2, . . . , a2k) ∈ {0, 1}2k, there exists a string x ∈ S such that
xij = aj for each j = 1, 2, . . . , 2k. Explicit constructions of such universal
families of very small size, namely at most ck log N , are known [143, 6, 144],
where ck is a constant that depends exponentially on k.

We claim this implies the existence of explicit oblivious strategies using
ck log N questions for the k-secrets guessing game. Indeed let {y1, y2, . . . , yn}
be a 2k-universal family of N -bit strings for some n ≤ ck log N . For 1 ≤ i ≤ n,
define the function fi : [N] → {0, 1} as follows: for each x ∈ [N], fi(x) is
simply the x’th bit of the string yi. That is, the string yi gives the truth
table of the function fi. Clearly if the yi’s are explicitly specified then so
are the functions fi. We claim the sequence of questions f1, f2, . . . , fn is a
valid oblivious strategy for the k-secrets guessing game. This is because, for
every pair of disjoint sets of k secrets each, say S1 = {i1, i2, . . . , ik} ⊂ [N]
and S2 = {ik+1, . . . , i2k} ⊂ [N], by the 2k-universality property there exists
some i for which fi(x) = 0 for each x ∈ S1 and fi(z) = 1 for each z ∈ S2.
This implies that the answer to question number i rules out one of the sets
S1 or S2 as being a possible set of k secrets consistent with all answers to
the questions f1, f2, . . . , fn. This is exactly what we wanted to show, and the
k-sets of secrets consistent with any answer to the questions f1, f2, . . . , fn

therefore form an intersecting k-uniform hypergraph.
The best known construction of 2k-universal families, due to [144], achieves

ck = 22k+o(k). We therefore have:

Theorem 12.10. For the k-secrets guessing game over a universe of size N ,
there exists an explicit oblivious strategy for B that uses at most 22k+o(k) log N
questions.

12.1.5 An Efficient “Partial Solution” for the k-Secrets Game

For the case of k > 2 secrets, the question of whether there exists a strategy
together with an efficient algorithm to actually find a representation of the
intersecting hypergraph is wide open. We instead aim for the weaker goal
of finding a small “core” of secrets such that any k-set which A might pick
must intersect the core in at least one secret. This at least gives useful partial
information about the set of secrets which A could have picked.

This version of the problem is quite easily solved if we could ask not just
binary questions, but questions with answers that lie in a larger alphabet
[q] = {1, 2, . . . , q}. That is, each of the n questions that B asks is now a
function Fi : [N] → [q], 1 ≤ i ≤ n. For any set of k secrets which A might
pick, the sequence of answers a ∈ [q]n must agree with the correct answers to
one of the secrets for at least n/k values of i. If q is a prime power bigger than

310 12 Sample Applications Outside Coding Theory

k, there are known explicit constructions of q-ary linear codes, say C, with
N codewords and block length O(log N) which are efficiently list decodable
from a fraction (1 − 1/k) of errors [89]. Basing the questions Fi on the n
positions of the code (as in the earlier binary case), the answer vector a of A
will differ from at least one secret in A’s set in at most a fraction (1− 1/k)
of positions. The list decoding algorithm, when run on input a, will output
a small list that includes that secret.

When B is only allowed binary questions, we can still give such a “core
finding” strategy as follows. Pick q to be a power of 2 larger than k2, and
C to be an explicit q-ary linear code that is list decodable using lists of size
poly(k) from a fraction (1 − 1/k2) of errors [89]. As above, we first encode
each secret by C to get a string of length n = O(log N) over [q]. We then
encode each element of [q] further using 2k-universal family F of strings in
{0, 1}q. That is, we encode j ∈ [q], by the string comprising of the j’th entry
from the set of strings in F . In other words, we concatenate C with the 2k-
universal family F to get a binary code C′. Player B now asks A for the bits
of the encoding of the secret as per the concatenated code C′.

Using the 2k-universal property of F , for each 1 ≤ i ≤ n, B can recover
an intersecting k-hypergraph Hi on [q] for the value of the i’th symbol of the
encoding of the k secrets by C. B can do this by a brute-force search over
all k-element subsets of q, since q, k are constants, this only takes constant
time for each i. B then picks one of the hyperedges Ei from Hi arbitrarily,
and then picks an element ai ∈ [q] from it at random.

Let S = {x1, x2, . . . , xk} be the set of k-secrets that A picked. Note that
Ei must intersect the set Si = {C(x1)i, . . . , C(xk)i} consisting of the i’th
symbols of the encoding by C of the secrets in S. Therefore, for each i,
1 ≤ i ≤ n, we have ai ∈ Si with probability at least 1/k. Hence, we will have
ai ∈ Si for at least an expected fraction 1/k of the i’s. An averaging argument
then implies that there must exist a j, 1 ≤ j ≤ k, for which ai = C(xj)i for
at least a 1/k2 fraction of i’s. Therefore, the assumed list decoding algorithm
for C on input a will find a small list that includes the secret xj . This lets us
conclude:

Theorem 12.11. For the k-secrets guessing game with a universe of N se-
crets, there exists an explicit oblivious strategy for B that uses O(log N) ques-
tions. Moreover, there is an efficient poly(log N) time algorithm for B to find
a small core of poly(k) secrets such that the k-set picked by A must contain
at least one secret from the core.

12.2 Applications to Complexity Theory

The interplay of coding theory and computational complexity theory has had
a long and sustained history, and has been a rich source of both problems and
results. In particular there are numerous examples of results in complexity

12.2 Applications to Complexity Theory 311

theory that make use of, or are inspired by, results in coding theory. Examples
include the early work on computation in the presence of noise, and more
recent successes like the theory of program testing and correcting, and new
characterizations of traditional complexity classed like PSPACE, NEXP and
NP in terms in interactive or probabilistically checkable proofs. The survey
article of Feigenbaum [56] gives a detailed account of many such uses of results
from coding theory in complexity theory.

Here we present applications of error-correcting codes to complexity the-
ory which differ from the above ones in that they crucially rely on the strength
of the decoding algorithms, and in particular on the ability to list decode from
a very large fraction of errors. A related survey article by Sudan [181] also
deals with connections between list decoding and complexity theory. In com-
parison, our survey is a little more detailed in nature.

12.2.1 Hardcore Predicates from One-Way Permutations

The first work that (implicitly) exploited list decoding for the purpose of a
complexity-theoretic application seems to be the seminal work of Goldreich
and Levin [69], who gave a generic construction of hardcore predicates from
an arbitrary one-way function. Implicitly, their work gives a highly efficient
list decoding algorithm to decode Hadamard codes from up to a fraction
(1/2 − ε) of errors.2 We now discuss how any good list decodable binary
code immediately gives such a hardcore predicate. Moreover, viewing the
question in the general terms of list decodable codes gives some quantitative
improvements in the construction, as was first noticed by Impagliazzo in an
unpublished work. Details of this generic connection to list decoding have
since appeared in the survey article by Sudan [181].

The hardcore predicate construction problem lies at the very foundations
of cryptography. Formally, the problem is the following. Given an arbitrary
one-way permutation f : {0, 1}k → {0, 1}k which is easy to compute every-
where but hard to invert by size s circuits even on a small fraction of the
range, construct a Boolean predicate P : {0, 1}k → {0, 1} such that P (x) is
very hard to predict given f(x), even for a (1/2+ε) fraction of the x’s, by size
s′ circuits (for s′ � s). Intuitively, the existence of such a predicate means
that any one-way permutation hides at least one bit, since the knowledge of
f(x) does not help at all in predicting the value of P (x).

The above task, as stated, is actually impossible to achieve, since for any
predicate P , it is possible to construct one-way permutations f such that f(x)

2Since a Hadamard code of blocklength n has only n codewords, it is trivial to
list decode the Hadamard code up to any radius under the models we have been
considering so far. The result of [69] works under an “implicit model” where one
only has oracle access to the codeword, and gives a poly(log n) time algorithm to
decode the Hadamard code under such a model. We will return to the implicit
version of list decoding in further detail in Section 12.2.2.

312 12 Sample Applications Outside Coding Theory

immediately gives away P (x). However, this arises due to the deterministic
nature of P , and by allowing P to be a function of x and a random string r,
such predicates can indeed be built. In fact any list decodable code with a
certain property gives such a construction, which is sketched below.

Let C be an (n, k)2 binary code with n = poly(k/ε) that has an efficient
encoding algorithm and an efficient (poly(n) time) list decoding algorithm to
decode up to a fraction (1/2−ε) of errors. Then P (x, r) = C(x)r , i.e. the r’th
bit of the encoding of x, gives us a predicate with the desired hardness. Indeed,
if for some x, a small circuit Ĉ computes P (x, r) correctly for a (1/2 + ε)
fraction of r’s, then one can use the assumed list decoding algorithm to
decode Ĉ’s output to find a small list of candidates that includes x. Further,
the knowledge of f(x) tells us how to find out which element of the list is x.
This gives a small circuit to invert f(x) for any x for which Ĉ predicts P (x, r)
correctly for a (1/2 + ε) fraction of r’s. The assumed hardness of inverting f
now implies that the fraction of such x’s must be tiny, and hence Ĉ does not
predict P much better than random guessing.

Finally, we note that several constructions of the code C with the required
properties are now known. All of them are based on code concatenation and
indeed the results of Chapter 8 imply that such codes exist for n = O(k/ε4).
If one seeks explicit constructions of the predicate, then one can achieve
n = O(k2/ε4) or n = O(k/ε8). The exact dependence of n on k, ε does not
matter for this application, as long it is polynomial in k and 1/ε.

We would like to stress two aspects of the above application. First, the
power of list decoding was necessary since we want to decode binary codes
up to a fraction (1/2 − ε) of errors. Second, the application gave a natural
tie-breaking scheme, namely the value of f(x), to pick the “correct” code-
word from the list of candidates output by the decoding algorithm. These
should provide some indication that list decoding exactly fits the ball for this
application.

It is also possible to get hardcore functions that output more than one
bit. For a constant number of bits this just involves using q-ary list decodable
codes for larger q as opposed to the binary codes used above. Recent work by
Ta-Shma and Zuckerman [184] uses extractors to give constructions of codes
over very large alphabets which can be used to extract as many as O(log2 k)
hardcore bits.

In a different construction, H̊astad and Näslund [100] prove that all bits of
ax + b mod p give hardcore predicates for any one-way function. Specifically,
they prove that if f is any one-way function mapping n bits into n bits, then
for each i, 1 ≤ i ≤ m, the predicate Pi(x; p, a, b) defined to be the i’th bit of
(ax + b) mod p where p is a random m bit prime (for m = Ω(log n)) and a, b
are random numbers modulo p, is a hardcore predicate for f . This result also
uses list decoding; specifically it uses an efficient list decoding algorithm for
Chinese Remainder codes (similar to those discussed in Chapter 7).

12.2 Applications to Complexity Theory 313

12.2.2 Hardness Amplification of Boolean Functions

An important area of complexity theory that has benefited greatly from el-
egant connections to coding theory is the hardness amplification of Boolean
functions. The basic question here is the following. Given a Boolean function
f : {0, 1}� → {0, 1} with high worst-case circuit complexity, i.e., no small
circuit can compute f correctly on every input, the goal is to “amplify” its
hardness and transform it into a Boolean function f ′ : {0, 1}�′ → {0, 1} which
has very high average-case circuit complexity, i.e. no small circuit can com-
pute f ′ on even an α fraction of inputs, for some α, 1/2 < α < 1. Ideally,
we would like to obtain extreme average-case hardness without blowing up
the input length too much. Quantitatively, this means we would like to have
�′ = O(�) and α very close to 1/2 (say, α = 1/2 + 2−Ω(�) — we call such
hardness “extreme average-case hardness” in the sequel).

The transformation of worst-case hardness into extreme average-case
hardness can be achieved via a two-step process. The first step obtains a
predicate with mild average-case hardness (i.e., α = 1−�−O(1)) from a worst-
case assumption [19], and is itself inspired by ideas from coding theory. In
the second step, the hardness is amplified by using the celebrated Yao’s XOR
Lemma, which states that a mild average-case hardness can be amplified to
extreme average-case hardness by taking the XOR of several independent in-
stances together (cf. [70]). The problem with this approach is that the length
of the input of the function f ′ blows up; specifically we will have �′ = Ω(�2).

The big motivation for reducing the input length �′ to O(�) is the appli-
cation to derandomization of BPP. Specifically, using a result of Nisan and
Wigderson [149], such a hardness amplification implies BPP = P under a
worst-case hardness assumption (namely that E = DTIME(2O(n)) does not
have circuits of size 2o(n)). Such a hardness amplification (with �′ = O(�) and
α = 1/2 + 2−O(�)) was achieved by a striking result due to Impagliazzo and
Wigderson [104]. The transformation involved three steps: the worst-case to
mild hardness transformation due to [19], a first derandomized XOR Lemma
due to Impagliazzo [103], and a second derandomized XOR Lemma due to
[104] (the derandomized XOR lemmas amplify the hardness while blowing
up the input length only by a constant factor).

In one of the most striking applications of list decoding to complexity
theory, Sudan, Trevisan, and Vadhan [182] show that, using certain very effi-
ciently list decodable codes, one can achieve the above hardness amplification
in a single step, without any need for complicated XOR lemmas. They require
codes Ck,ε which encode k bits into n = poly(k, 1/ε) symbols (assume n is a
power of two), which can be encoded in poly(n) time, and which can be list
decoded in poly(log k, 1/ε) time from up to a fraction (1/2−ε) of errors. This
is similar to the codes we required for the application to hardcore predicate
construction, except that we now allow the list decoder only time which is
polynomial in log k, 1/ε (and not the “more reasonable” poly(k, 1/ε) time).

314 12 Sample Applications Outside Coding Theory

To obtain the desired hardness amplification using such a code, we treat
the truth table of f as a k = 2� bit string, and treat its encoding it by Ck,ε,
which is of length n = poly(k/ε) = 2O(�+log(1/ε)), as a function f ′ : {0, 1}�′ →
{0, 1} where �′ = O(� + log(1/ε)). Thus we can pick ε = 2Ω(�′) and still have
�′ = O(�). Using the list decoding properties of Ck,ε, it is easy to prove that
a circuit for f ′ that computes it correctly on a fraction (1/2 + ε) of inputs
implies a slightly larger circuit that computes f correctly on every input.
The assumed worst-case hardness of f then immediately implies the extreme
average-case hardness of f ′.

Of course the requirement on our code Ck,ε is fairly severe, since we want
a list decoding algorithm that runs in time which is sub-linear in k. In par-
ticular, this implies that there is not even enough time to scan the entire
received word before decoding it, or to output the entire message after de-
coding is complete! This seems impossible to achieve. But by both specifying
the input received word “implicitly” and allowing the output message to also
be specified “implicitly”, it becomes possible to decode in time sub-linear
in the blocklength. The implicit representation of the input just means that
there exists an oracle which when queried with index i responds with the i’th
bit of the received word. The implicit representation of the output message
is more tricky to define, but loosely speaking, we require the decoding to
output a program, which on input j will output the j’th bit of the message.
The exact definition allows these programs to be randomized and is a little
more subtle, and we point the reader to [182] for further details.

Finally, the authors of [182] are also able to construct such a code Ck,ε

with a poly(log k, 1/ε) list decoding algorithm in the above implicit model.
Their construction is based the concatenation of a Reed-Muller code with
the Hadamard code, and a highly efficient list decoding algorithm for Reed-
Muller codes in the implicit model. The first such list decoding algorithm for
Reed-Muller codes was due to Arora and Sudan [12], where they used the
list-decoding algorithm/algebra to reduce the “low-degree testing question”,
which is an important one in complexity theory, to an analysis of a version
of Hilbert’s test for irreducibility of multivariate polynomials. While the al-
gorithm from [12] would have sufficed for the result from [182] stated below,
[182] also gives a simpler list decoding algorithm for Reed-Muller codes that
corrects more errors. After concatenation with an Hadamard code, they are
able to prove:

Theorem 12.12 ([182]). For every q, ε, k, if n ≥ poly(k, q, 1/ε), then there
exists an explicitly specified [n, k]q linear code with a polynomial time list
decoding algorithm for up to a fraction (1− 1/q− ε) of errors. Furthermore,
the algorithm runs in poly(log k, q, 1/ε) time if both the input and the output
are specified implicitly.

(The case q = 2 is described explicitly in [182]; the case of larger q is stated
explicitly in [181] and it can also be inferred from the proof in [182].)

12.2 Applications to Complexity Theory 315

Using the above code construction and the above-mentioned connection
to hardness amplification, [182] obtain an elegant one-step hardness amplifi-
cation of Boolean functions, which is strong enough to imply BPP = P under
a worst-case hardness assumption.

12.2.3 Average-Case Hardness of Permanent

One of the first results to establish the average-case hardness of a prob-
lem that is believed to be very hard on the worst-case was Lipton’s striking
discovery of the random self-reducibility of the permanent modulo a large
enough prime. Specifically, Lipton [129] showed the following result: if it is
easy to compute the permanent of an n × n matrix modulo a prime p > n
with probability 1−O(1/n), then it is also easy to compute the permanent of
every n× n matrix modulo p. This important result laid down the seed for a
number of interesting results in complexity theory, including IP = PSPACE
and the PCP characterizations of NP.

Subsequent results attempted to obtain the same (or similar) consequence
as Lipton’s result but assuming algorithms which only worked for a much
smaller fraction of random matrices. For example, the work of Feige and
Lund [55] showed that the existence of an efficient procedure to compute
the permanent of n × n matrices over Fp on even an exponentially small
fraction of matrices would imply that P#P ⊆ AM, and in particular that the
polynomial hierarchy collapses. Therefore, such an algorithm is unlikely to
exist. Here, we would like to point out that their proof implicitly proves and
uses a certain combinatorial list decodability property (specifically a version
of the Johnson bound) of Reed-Solomon codes.

Cai, Pavan and Sivakumar [36] strengthened the result of Lipton by show-
ing that it suffices to assume an algorithm that works for an inverse poly-
nomial fraction of matrices, provided the prime p is sufficiently large. Their
result uses the efficient list decodability of Reed-Solomon codes from a large
fraction of errors (and builds upon ideas from an earlier paper by Gem-
mell and Sudan [67], who obtained a weaker result using unique decoding of
Reed-Solomon codes). In [71], it was shown that if there exists an algorithm
for computing the permanent with an inverse polynomial success probability
when both the matrix and the prime are picked at random, then P#P ⊆ BPP.
This result uses list decoding algorithms for both the Reed-Solomon code and
the Chinese Remainder code. Cai et al [36] later observed that it is possible
to obtain the same results as [71] using their techniques, thus avoiding the
use of Chinese Remainder decoding. But the use of efficient Reed-Solomon
list decoding remains crucial to these applications.

12.2.4 Extractors and Pseudorandom Generators

Explicit constructions of combinatorial objects which exhibit strong pseu-
dorandom properties are desirable for numerous applications in computer

316 12 Sample Applications Outside Coding Theory

science. Examples of such objects include expanders, dispersers, extractors,
and pseudorandom generators. Recently various non-trivial interconnections
have been found between some of these seemingly disparate objects. One
of the common threads underlying these results has been the crucial role
played by list decoding and constructions of good list decodable codes. We
now review some of these inter-relations between extractors, pseudorandom
generators, and list decodable codes. We first give brief, informal definitions
of extractors and pseudorandom generators.

Extractors are functions which take two inputs, say x and y, where x
comes from a weak source of randomness (which has a certain “min-entropy”),
and y is a much smaller string of truly random bits. When fed with inputs
from such distributions, the output of the extractor should be statistically
close to uniform. Intuitively, an extractor is a function that “extracts” almost
truly random bits from the output of weak random source using a small
number of additional truly random bits as a catalyst. We refer the reader to
the survey by Nisan [148] for further details on extractors.

Pseudorandom generators are deterministic functions which take as input
a small “seed” and expand it into a much longer string. The crucial prop-
erty of pseudorandom generators is that when the input seed is completely
random, the output of the pseudorandom generator is computationally in-
distinguishable from a truly random string of the same length. Intuitively, a
pseudorandom generator stretches a small random string into a much longer
one which appears random to and “fools” any computationally-bounded ad-
versary. Such a generator which creates randomness out of nowhere provably
cannot exist in the information-theoretic setting, but exists in the compu-
tational setting (assuming the existence of one-way functions, for example).
We refer the reader to [68, Chap. 3] for further definitions and background
on pseudorandom generators.

Extractors from Codes Explicit constructions of extractors are of great
interest and have a wide variety of applications. Initial constructions of ex-
tractors all relied on properties offered by various families of hash functions.
In a departure from these approaches, Trevisan [187] gave a breakthrough
construction of extractors by combining a pseudorandom generator of Nisan
and Wigderson [149] together with binary codes with good combinatorial
list decoding properties. The intriguing aspect of this result was the use of
pseudorandom generators, originally intended to work only in a computa-
tional setting, to derive a purely information-theoretic result. The use of a
list decodable code as in Trevisan’s construction is also part of the numerous
improvements to Trevisan’s extractor that have since been obtained.

Very recently, a different, more direct, algebraic approach to constructing
extractors was found by Ta-Shma, Zuckerman, and Safra [185]. Their results
were later improved by Shaltiel and Umans [159]. In this construction, the
string sampled from the weak random source is viewed as a multivariate
polynomial over a finite field and the seed is viewed as a random evaluation

12.2 Applications to Complexity Theory 317

point. In coding-theoretic terms, the construction can be viewed as encoding
the input from the weak source by a code obtained by concatenating a Reed-
Muller code with a “suitable” binary code, and then selecting a (carefully
chosen) subset of bits of the encoding as the output (the actual subset chosen
is governed by the random seed). The binary code used is again one with
good combinatorial list decoding properties. In addition to the use of list
decodable codes in the construction itself, the proof of the extractor property
also critically makes use of the combinatorial list decoding property of Reed-
Solomon codes. In fact, codes are more inherent to and more deeply exploited
in these constructions than that of Trevisan, where the use of pseudorandom
generators was the most crucial component.

Explicit constructions of codes with efficient (as opposed to just combi-
natorial) list decodability is crucial to the work of Mossel and Umans [142],
who use such codes to construct “extractor-like” objects, namely zero-error
dispersers for certain generalized bit-fixing sources. (Such “dispersers” are
used in [142] to prove the Σ3-hardness of approximating the VC-dimension
to a factor even slightly better than 2.)

Codes from Extractors The above applications exploit codes and list
decoding to construct extractors (or extractor-like objects). Recently, Ta-
Shma and Zuckerman [184] showed a result in the opposite direction, namely
that extractors give codes over large alphabets with good combinatorial list
decoding properties. However, in general it is not clear how to match the
combinatorial list decoding potential of the code with an efficient list decoding
algorithm. For the specific case of Trevisan’s extractor, [184] were able to
obtain an efficient list decoding algorithm. While the parameters of such a
code are not very interesting from a coding point of view (the alphabet size
is huge and the rate is extremely small), they applied such extractor codes
to constructions of hardcore functions that output many bits. In order to
give an efficient algorithm, [184] needed the underlying binary code used by
Trevisan’s construction itself to have an efficient list decoding algorithm to
correct close to a fraction 1/2 of errors. Therefore, this application, even
though its final output is a “new” list decodable code, needs an efficiently
list decodable binary code to start with.

A direct use of the extractor codes scheme as in [184] does not lead to
codes with parameters that are interesting from a purely coding-theoretic
point of view — for example, they cannot, due to some bounds on the in-
evitable entropy loss in extractors, improve upon the ε2 rate achieved by
Reed-Solomon codes for list decoding a fraction (1− ε) of errors, even if one
uses the optimal extractors. However, in subsequent work [79], it was shown
how to use extractors from the work of Ta-Shma, Zuckerman, and Safra [185]
as a component in expander-based code constructions similar to those in Sec-
tion 9.4 to construct error-correcting codes that beat the above-mentioned ε2

rate barrier, albeit only with sub-exponential time decoding. It is interesting
that since the TZS extractors are themselves just directly constructed from

318 12 Sample Applications Outside Coding Theory

Reed-Muller codes, the construction of [79] can be described purely in terms
of (weird) operations on Reed-Muller codes, and yet there seems to be no
reasonable way to present and analyze a list decoding algorithm that does
not heavily exploit notions from the pseudorandomness/extractors world like
next-bit predictors, reconstruction paradigm, etc. This indicates that this in-
terplay between extractors and codes is a powerful one that merits deeper
study.

Pseudorandom Generators from Codes In their paper, Shaltiel and
Umans [159] also modify their extractor construction based on Reed-Muller
codes to construct a new pseudorandom generator, directly based on a worst-
case hardness assumption for functions in E = DTIME(2O(n)). Their con-
struction matches the parameters of the construction of [104, 182], and in
particular is strong enough to prove that BPP = P under a worst-case hard-
ness assumption for some function in E. It is also the first such construction
that does not use the Nisan-Wigderson generator.

We point out here that the pseudorandom generator construction of [159]
requires efficiently list decodable binary codes, as well as efficient list decod-
ability of Reed-Solomon codes. Recall that pseudorandom generators were
crucial to Trevisan’s extractor, which in turn were used in [184] to construct
good list decodable codes (at least over very large alphabets). Therefore,
it is interesting to note that this application of list decodable codes to a
pseudorandom generator construction “returns the favor” to pseudorandom
generators, and completes a full circle!

A recent work of Trevisan [188] uses certain randomness efficient versions
of the XOR Lemma, which is a core construct in pseudorandomness and
hardness amplification, to construct new list decodable codes. While these
codes do not have constant rate and are not asymptotically good, they provide
one of the two currently known constructions of list-decodable codes that
do not rely on the list decoding of Reed-Solomon (or algebraic-geometric)
codes, the other such construction being the expander-based constructions
of Guruswami and Indyk [83] who also manage to achieve constant rate and
more impressively, linear time encoding and list decoding algorithms.

12.2.5 Membership Comparable Sets

List decoding also has applications to “membership comparability” of NP-
complete languages. A language A is said to be k(n) membership comparable
if there is a polynomial time computable function that, given k(n) instances of
A of length at most n, excludes one of the 2k(n) possibilities for memberships
of the given strings in A.

The motivation for studying membership comparability is two-fold. First,
membership comparability investigates whether even the least amount of in-
formation about the k-wise direct product of a hard function can be com-
puted. To elaborate with an example, if SAT is the characteristic function

12.2 Applications to Complexity Theory 319

of the NP-complete language of satisfiable CNF formulae, then the k-fold
direct product SAT k, which is a function that takes a vector of k formulae
φ = 〈φ1, φ2, . . . , φk〉 and outputs the k-bit vector 〈SAT (φ1), . . . , SAT (φk)〉,
is presumably much harder to compute. Membership comparability asks if
even the least amount of information about SAT k can be computed effi-
ciently. That is, given an instance vector φ, can one rule out at least one of
the 2k k-bit vectors as being not equal to SAT k(φ) ?

Second, it generalizes the notion of p-selectivity, which in turn has found
many applications in complexity theory. A language A is said to be p-selective
if there is a polynomial time computable function f such that for all x, y,
f(x, y) ∈ {x, y} and f(x, y) ∈ A whenever at least one of x, y is in A. Infor-
mally, the selector function tells which of its two input strings is “more likely”
to be a string that belongs to the language A. It is easy to see that p-selective
sets are a special case of k(n) membership comparable sets when k(n) = 2,
where given instances x, y of A, the membership comparator always excludes
one of the possibilities (0, 1) or (1, 0) for the sequence (χA(x), χA(y)).

We refer the reader to the paper of Sivakumar [172] for an excellent discus-
sion of membership comparable sets, their motivation and role in complexity
theory, and further pointers. For us, we just would like to mention the one
connection to p-selective sets that motivates the problem solved here. It is
known that if a language A is polynomial time truth table reducible to a
p-selective set, then A is O(log n) membership comparable. Sivakumar [172]
proves the nice hardness result that if SAT is O(log n) membership compara-
ble, then NP = RP. Through the connection to p-selective sets, this implies
an alternative proof of the fact that if SAT is reducible to a p-selective set by
polynomial truth-table reductions, then NP = RP. This proof was, however,
more complicated than the original proofs of [186, 21]. Below we give a some-
what easier proof of Sivakumar’s result which works by simply appealing to
the existence of certain list decodable codes.

Theorem 12.13 ([172]). If SAT is O(log n) membership comparable, then
NP = RP.

Proof: Suppose there exists a constant d such that SAT is d log n member-
ship comparable. We will prove that UniqueSAT ∈ P under this assumption.
Together with the randomized reduction from SAT to UniqueSAT [192], this
implies the claim of the theorem.

Let φ be an instance of UniqueSAT on n boolean variables. Define p =
d log n and q = 2p = nd. Let C be an [N, n]q linear code of dimension n
and blocklength N which can be list decoded in poly(n) time from a fraction(
1− 1

q−1

)
of errors. An explicit construction of such a code with N = poly(n)

can be obtained using a suitable concatenated code (for example one can
apply Theorem 12.12 with the settings k = n, q = nd and ε = n−2d).

For each i, j, where 1 ≤ i ≤ N and 1 ≤ j ≤ p, construct a collection of
p = d log n Sat formulae φi,j over n variables as follows: For each a ∈ {0, 1}n,

320 12 Sample Applications Outside Coding Theory

φi,j(a) def=
(
φ(a) ∧ The jth bit of C(a)i equals 1

)
.

(Here C(a)i stands for the i’th symbol in the encoding of a as per the code
C, and we view elements of GF(2p) as p-bit vectors using some fixed basis
GF(2p) over GF(2).)

Suppose φ were satisfiable (in case it is not, we will never find a wit-
ness, so we only worry about the satisfiable case), and let a be the unique
satisfying assignment to φ. We use the polynomial membership comparator
function f guaranteed by the hypothesis, to get, for 1 ≤ i ≤ N , vectors
bi = f(φi,1, . . . , φi,p) ∈ {0, 1}p such that bi
= (χSAT (φi,1), . . . , χSAT (φi,p)).
By the definition of φij and the fact that a is the unique satisfying assignment
to φ, we can conclude, for 1 ≤ i ≤ N , that bi when viewed as an element of
GF(q), is not equal to C(a)i. Thus we have a word (b1, b2, . . . , bN) ∈ GF(q)N

with all symbols in disagreement with the codeword C(a).
Now, for each i, 1 ≤ i ≤ N , if we pick ri at random from GF(q)\{bi}, then

r = 〈r1, r2, . . . , rN 〉 will have expected Hamming distance at most
(
1− 1

q−1

)
N

from C(a). This procedure can be easily derandomized to find r which is
guaranteed to be within Hamming distance

(
1− 1

q−1

)
N from C(a). Now we

can run the list decoding algorithm for C on input r, and the list L that is
output will contain the string a. One can then go over all strings in L to see
if any of them satisfy the formula φ. If we find such a string, we accept φ,
otherwise we reject φ. This would give a polynomial time procedure to decide
membership in UniqueSAT, as desired. �

Once again note that the application above provided a nice tie-breaking
criterion, namely the satisfiability of the formula φ, to pick the “correct”
element from the list output by the list decoding algorithm.

12.2.6 Inapproximability of NP Witnesses

For an NP-complete language, say L, given a string x ∈ L, we know that
it is unlikely that a polynomial time algorithm can find a witness for the
membership of x in L. But can a polynomial time algorithm compute a non-
trivial “approximation” to the witness?

There are various ways in which one can formalize the notion of “approxi-
mation”. For example, one can compute a small portion of some true witness.
Or, one can compute a string which agrees with the witness is a non-trivial
fraction of positions. These notions were first studied by [62] and [123]. In this
section, we use list decoding to prove hardness results for even approximately
computing NP witnesses.

The Models The work of Gál, Halevi, Lipton, and Petrank [62] considered
the first model where the goal is to correctly compute a small portion of the
witness. For several important NP-complete problems, the authors of [62]
proved that computing even a small fraction of the witness is as hard as

12.2 Applications to Complexity Theory 321

finding the full witness. For example, by using codes uniquely decodable up
to a fraction (1/2 − ε) of erasures, they proved that computing a (1/2 + ε)
fraction of any satisfying assignment of a CNF formula is NP-hard. By an
implicit use of codes with very good list decodability from erasures, they also
proved that, for any γ > 0, given a SAT instance on N variables, computing
an assignment to N1/2+γ variables which can be extended to a full satisfying
assignment to all N variables, is NP-hard under randomized reductions.

The realization that the application in [62] really calls for codes list
decodable from a large number of erasures was made in [123]. There is,
however, one subtle and important difference between the models used by
[62] and [123], which we highlight below. Every language L in NP comes
with a polynomial-time decidable witness predicate RL such that L = {x :
∃w, (|w| = |x|c) ∧RL(x, w)}. Moreover, there is often a “natural” choice for
the witness predicate RL. For example, for SAT, the witness is just a satis-
fying assignment and the witness predicate, on input (φ, w), simply checks
if the assignment w satisfies the formula φ. Gál et al [62] wanted to map an
instance x of L into another instance y of L, and then argue that partial
computation of some witness for membership of y in L for the predicate RL,
enables the computation of an entire witness for membership of x in L, for
the same witness predicate RL. In [123], the authors allowed a different, not
so natural, witness predicate R′

L, and related the partial computation of a
witness for R′

L with the computation of a full witness for the “natural” pred-
icate RL. This implies that there is a formulation of every NP language via
some (unnatural) witness predicate R′

L for which computing a partial wit-
ness or approximating a correct witness is NP-hard. Naturally, results under
the model of [123] are easier to obtain. In fact, as observed by [123], there a
simple, general transformation of predicates using list decodable codes that
does the job in the latter model. This is outlined next.

The Connection to List Decoding Let RL be a witness predicate for a
language L ∈ NP. Let C be a family of good list decodable binary codes,
with a code Ci of dimension i for every i ≥ 1. Suppose that each code Ci

is list decodable from a fraction (1 − ε) of erasures in poly(i) time. We use
C = {Ci}i≥1 to define a predicate R′

L from RL as follows:

R′
L(x, z) =

[
(|z| = |x|d) ∧ (∃y)

[
RL(x, y) ∧ (|y| = |x|c) ∧ (z = C|y|(y))

]]
.

Now, suppose x ∈ L with |x| ∈ {0, 1}n, and that there is a polynomial
time procedure to compute a string ẑ comprising an ε fraction of the symbols
in a witness z for which R′

L(x, z) holds. Let N = nc and let y ∈ {0, 1}N be
such that CN (y) = z. Then, one can run the polynomial time erasure list
decoding algorithm for CN on input ẑ, to compute, in poly(N) = poly(n)
time, a polynomial-sized list {y1, y2, . . . , y�} ⊂ {0, 1}N which includes the
witness y. We can then run through the elements in this list and for each
yi check if RL(x, yi) holds, and if so, output it as the witness that x ∈ L

322 12 Sample Applications Outside Coding Theory

(for the witness predicate RL). This gives a polynomial time algorithm to
compute an entire witness for the predicate RL, given only an ε fraction of
some witness for the predicate R′

L.
By using a code family C which is list decodable from a large fraction

of errors (as opposed to erasures), we can similarly deduce the hardness of
computing an “approximate witness”, i.e., computing a string with non-trivial
agreement with some witness.

Exploiting this connection, Kumar and Sivakumar [123] presented various
results in this vein. But the codes they used were not the best possible, and
later the author and Sudan [89] constructed better list decodable codes. Using
these better codes, they were able to improve the results of [123]. The results
they obtain are formally stated below; the proofs may be found in [89].

Theorem 12.14 ([89]). For every γ > 0 the following holds. For every lan-
guage L in NP, there exists a polynomial time decidable witness predicate R′

L

such that for every x ∈ L, given any |z|1/2+γ bits of an unknown witness z
that satisfies R′

L(x, z), one can, in poly(|x|) time, compute a witness z′ that
satisfies R′

L(x, z′).

Theorem 12.15 ([89]). For every γ > 0 the following holds. For every lan-
guage L in NP, there exists a polynomial time decidable witness predicate
R′

L such that for every x ∈ L, given an arbitrary string of length N which
agrees with some (unknown) N -bit witness z that satisfies R′

L(x, z) in at least
N/2+N3/4+γ positions, one can, in poly(|x|) time, compute a witness z′ that
satisfies R′

L(x, z′).

Hardness of Approximating “Natural” NP Witnesses While the re-
sults of Theorems 12.14 and 12.15 provide strong hardness results for approx-
imate witness computation for NP languages, they have one shortcoming.
They assume we have enough freedom in how to encode witnesses. Specif-
ically, the predicates R′

L for which the stated results hold may not be the
“natural” ones for the language. For example, for SAT, it would be desirable
to get a result similar to the above results when the witness is a satisfying
assignment of the CNF formula and R′

L is the natural predicate that simply
checks if the witness assignment satisfies the input CNF formula. This model
was the original focus of [62]. But the notion of a “natural witness” cannot
be formalized in any generality, and hence results in the vein of [62] have to
be on a problem-to-problem basis. Nevertheless, it is a worthwhile question
to study at least for the most fundamental NP-complete problems. Such a
study was recently undertaken by Feige, Langberg and Nissim [54], who built
upon and improved the results in [62].

Using good binary codes efficiently list decodable from up to a fraction
(1/2−ε) of errors (for example any of the concatenated codes we discussed in
Chapter 8), they proved the following result on the witness inapproximability
of SAT.

12.2 Applications to Complexity Theory 323

Theorem 12.16 ([54]). For every ε > 0, the following holds. Given a sat-
isfiable 3SAT instance φ on n variables, the problem of finding a string of
length n that agrees with some satisfying assignment of φ on at least (1/2+ε)n
variables, is NP-hard.

Actually one can have the above result with ε = n−γ for some γ > 0. In
addition to being interesting in its own right, as noted in [54], the above result
is also important due to a recent randomized algorithm for finding a satisfying
assignment for 3SAT formulas due to Schöning [157]. This algorithm has a
runtime of O((4/3)n), which is the best currently known for solving 3SAT.
The runtime of Schöning’s algorithm can be further improved if there were
a polynomial time algorithm to compute an initial assignment that agrees
with some satisfying assignment on a (1/2 + ε) fraction of the variables for
some constant ε > 0. The above result pretty much rules out the prospect of
improving the algorithm in this manner.

A similar result for the hardness of finding partial satisfying assignments,
stated below, was proved earlier by [89], using techniques from [62] together
with good erasure list decodable codes.

Theorem 12.17 ([89]). For every γ > 0, the following holds. Given a satis-
fiable 3SAT instance φ on n variables, the problem of finding an assignment
to some subset of n3/4+γ variables such that the partial assignment can be
extended to a satisfying assignment, is NP-hard.

The authors of [62] had obtained the above result even for an assignment
to n1/2+γ variables, but they only proved NP-hardness under randomized
reductions (this was because they used probabilistic constructions of certain
erasure list decodable codes, while Theorem 12.17 uses explicit constructions
of such codes with slightly worse parameters).

Similar to 3SAT, [54] proves hardness results for approximating witness
for several canonical NP-complete problems to within a factor even slightly
better than what random guessing would achieve. As an example, we state
their result for 3-Coloring below. This result uses the existence of ternary
codes that are efficiently list decodable from up to the “maximum possible”
fraction (2/3− ε) of errors.

Theorem 12.18. For every ε > 0, the following holds. Given a 3-colorable
graph G on n vertices, the problem of finding a 3-coloring of its vertices
which agrees with some proper 3-coloring of G on at least (1/3+ε)n vertices,
is NP-hard.

Recent Improvements More recently, Sheldon and Young [163] proved,
using “direct” methods that do not use list decoding, that for a certain uni-
versal NP-complete language, finding a string that agrees with a witness at
even N/2 − √

εN lnN positions is NP-hard, for arbitrary ε > 0. Note that
this bound is tight, since picking a random string will yield such agreement

324 12 Sample Applications Outside Coding Theory

with high probability. In contrast, the approach outlined above using just
list decoding can certainly not beat the N/2 barrier. The above tight result
is for a specific NP-complete language. For SAT, they prove that finding
an assignment that agrees with a satisfying assignment on at least n/2 + nε

positions is NP-hard, for arbitrary ε > 0.

12.3 Applications to Cryptography

The hardcore predicate construction problem that we discussed in Sec-
tion 12.2.1 as a complexity-theoretic application of list decoding is also at
the very foundations of modern cryptography. Below we discuss some other
cryptographic applications of list decoding.

12.3.1 Cryptanalysis of Certain Block Ciphers

Block ciphers are constructs used to securely permute a block of bits (of
certain convenient size). Mathematically, a block cipher is a collection of per-
mutations mapping plaintexts into ciphertexts, each of which is determined
by a “key”. Knowledge of the key enables efficient computation of both the
permutation and its inverse. The ideal security condition of a block cipher
demands that without knowledge of the key a polynomial-time bounded ad-
versary with oracle access to both directions of the permutation is unable to
distinguish the cipher from a truly random permutation on the same message
space.

A number of block ciphers used in practice encode the plaintext in sev-
eral rounds. At each round a certain round function (possibly using its own
“round key”) is applied, and the output of one round function is the input
to the next round function. The security of the overall block cipher generally
improves with the number of rounds, but a larger number of rounds also
means larger keys and less efficient enciphering algorithms. For some block
ciphers, the round function can be described by a low-degree polynomial for
a non-negligible fraction of its input values. Some simple round functions of
this nature in fact provide very good security against the common forms of
attacks involving differential and linear cryptanalysis, even for relatively few
rounds.

Nevertheless, intuitively such ciphers do appear to be weak, since the
existence of a non-trivial algebraic relation between the plaintext and the
ciphertext would make the round function appear quite non-random, and it
is not clear this will be alleviated by taking several rounds of such functions.
But there was no formal attack which corroborated this intuition. Recently,
Jakobsen [106] exposed the weakness of such block ciphers using techniques
from coding theory, and in particular list decoding. Specifically, he used the
Reed-Solomon list decoding algorithms to break several rounds of block ci-
phers whose round functions have even a small agreement with low-degree

12.3 Applications to Cryptography 325

polynomials. In particular, he was able to break up to 10 rounds of a construc-
tion by Nyberg and Knudsen that was provably secure against differential
and linear cryptanalysis. This represents an interesting use of list decoding
in cryptanalysis, and on the flip side provides useful new design criteria for
block ciphers. In particular, it indicates that good properties against differ-
ential or linear attacks alone is not enough, and that one must avoid using
round functions which are algebraically very simple. For further details on the
details of the cryptanalysis, we refer the reader to the original article [106].

12.3.2 Finding Smooth Integers

An integer N is said to be s-smooth if all its prime factors are smaller than s.
The problem of finding smooth integers in a given interval is important since
common factoring algorithms such as the quadratic sieve work by searching
for smooth integers. Actually these algorithms search for integers x ∈ [−B, B]
for which f(x) is s-smooth, where f is some low-degree polynomial over
the integers, and B, s are suitable parameters used by the algorithm. For
example, the quadratic sieve algorithm, on input N , uses polynomials of the
form fa(x) =

(
x + �√aN�)2 − aN for some small values of a. It uses a

technique called “sieving” to find integers x ∈ [−B, B] such that fa(x) is
s-smooth. Further details about the quadratic sieve algorithm may be found,
for example, in [125].

By generalizing the list decoding algorithm for Chinese Remainder codes,
Boneh [31] showed how to solve the above problem in polynomial time for
certain settings of parameters. As a side consequence, the upper bound on list
size also implies interesting upper bounds on the number of integers that can
lie in intervals of certain size and have a large smooth factor. However, the
current bounds on CRT decoding turn out to be inadequate for improving
the basic quadratic sieve. The main problem is that random intervals of the
length for which CRT decoding applies are too small to contain sufficiently
many smooth integers. In order for this line of research to have hopes of
improving the best known factoring algorithms, a significant improvement to
CRT decoding would be required. Specifically one would need a version of
CRT decoding which works for random intervals of much larger length by
exploiting the fact that such an interval, unlike a possibly worst-case interval
of similar size, will not contain too many smooth integers.

12.3.3 Efficient Traitor Tracing

Consider the situation where a set of authorized users/subscribers have ac-
cess to a paid service via their own “keys” (which can be bought from the
subscription provider). A good example is the distribution of digital informa-
tion over a broadcast channel (like encrypted pay-TV programs), where each
subscriber has access to a “decoding box” that contains a secret decryption

326 12 Sample Applications Outside Coding Theory

key. In this situation, nothing prevents an authorized subscriber from simply
distributing his/her secret key to other users, thus making the “paid” service
freely available also to non-subscribers. One possible approach to combat this,
which motivates and underlies the rationale of traitor tracing, is to distribute
a set consisting of several keys to each subscriber in such a manner that the
set of keys not only enables the subscriber to decrypt, but also identifies the
subscriber. The threat of an illegitimately distributed key being traced back
to the owner of that key would then serve as a deterrent to the subscribers
from involving in piracy.

In general, traitor tracing tries to do even better and deal with the situ-
ation where a set of c subscribers collude together and combine portions of
their respective sets of keys in a clever way in order to create a new set of
keys, which can still decrypt, but which hopefully (from their perspective!)
cannot be traced back to any one of them. The phrase traitor tracing itself
was first coined in [37], and since then there has been a lot of research on the
design of good traitor tracing schemes.

The design of a traitor tracing scheme is a two-fold process. The first
task is combinatorial and the goal here is to choose the set of keys that will
be distributed to each authorized subscriber. The second task is algorithmic
and deals with the actual tracing of traitors involved in a collusion that
produces a fake set of keys. Here, the usual assumption is that the number
of users involved in the collusion is fairly small, and tracing schemes are
designed to deal with collusions of up to some size c. The ideal goal would be
that the tracing algorithm finds and implicates all members of the collusion
and also only members involved in the collusion. But one can also relax
this requirement to that of finding at least one member of the collusion (as
that itself serves as a reasonable deterrent), and possibly allow for a small
probability of accusing an innocent subscriber.

We now come to the connection to list decoding. We will only sketch
this connection at a high level, and point the reader to the relevant articles
for further details. By assuming that the set of keys distributed to each
subscriber is ordered, one can construct tracing schemes with the necessary
combinatorial property by deriving the keys from error-correcting codes with
large minimum distance. Thus, roughly, each subscriber has some codeword
for her set of keys. Then, given a pirated set of keys, viewing that as a noisy
received word and performing list decoding, gives a list of codewords which
includes at least one of the codewords corresponding to colluding subscribers,
and hopefully no spurious codewords corresponding to innocent subscribers.

Silverberg, Staddon and Walker [169] observed that the above connection,
when applied to constructions based on Reed-Solomon, algebraic-geometric,
and concatenated codes (with outer Reed-Solomon or AG-codes and inner
Hadamard code), gives very good traitor tracing schemes. Their result cru-
cially exploits the list decoding algorithms that we discussed for these codes.
In fact, they need list decoding up to exactly the radius to which our algo-

12.3 Applications to Cryptography 327

rithms from Chapters 6 and 8 can decode these codes! Namely, they need
the ability to decode up to (close to) the Johnson radius. In particular, the
improvement in number of errors corrected that we obtained over the earlier
works [178, 165] is essential for the application in [169].

The work of [169] gives highly efficient traitor tracing algorithms. For ex-
ample, the scheme based on Reed-Solomon codes can run in poly(log N) time
where N is the number of subscribed users, and protect against collusions of
size logΩ(1) N . The drawback is that the scheme is guaranteed to find only
one traitor in the worst-case, though it never accuses innocent subscribers.

Codes have also been used in less direct ways for traitor tracing. For
example, the scheme of Boneh and Franklin [32] uses Reed-Solomon codes
in the construction, albeit together with other components. Their tracing
algorithm requires only unique decoding of Reed-Solomon codes; however,
they do mention that using the list decoding algorithms will increase the size
of the collusion for which the algorithm performs meaningful tracing (see
[32] for further details). The nice feature of their scheme is that it traces all
traitors in coalitions of up to a certain size, and once again never accuses
innocent subscribers.

13 Concluding Remarks

The outcome of any serious research can only be to
make two questions grow where only one grew before.

Thorstein Veblen

13.1 Summary of Contributions

In this work, we have addressed several fundamental questions concerning
list decoding. We began in the first part with the study of certain combi-
natorial aspects of list decoding, and established lower and upper bounds
on the number of errors correctable via list decoding, as a function of the
rate and minimum distance of the code. In particular, the “Johnson bounds”
highlighted the radius up to which list decoding with small lists is possible
for any code of certain minimum distance, thereby posing algorithmic chal-
lenges to design efficient algorithms to decode important codes up to their
“list decoding potential” (i.e., their respective Johnson radii).

We then met this challenge for several important families of codes. In
particular, we presented such a list decoding algorithm for Reed-Solomon
codes, and also obtained a version of it that could handle soft information.
We also presented a unified (soft) list decoding algorithm for a general fam-
ily of codes called ideal-based codes that includes Reed-Solomon, algebraic-
geometric, and Chinese Remainder codes as special cases.

Using our soft decoding algorithm for Reed-Solomon and algebraic-
geometric codes at the core, we then presented algorithms to list decode
several interesting families of concatenated codes to close to their “list de-
coding potential” (at least for low rates, and sometimes for all rates). This
enabled us to construct binary codes of good rate which were efficiently list
decodable from the “maximum” possible fraction of errors, i.e., a fraction
(1/2 − ε) of errors for a constant ε > 0 as small as we seek. The best con-
struction obtained a rate of Ω(ε4), which comes close to Θ(ε2), the best
possible rate (achieved by random codes and exponential time brute-force
decoding). We also studied the analogous question of list decoding from era-
sures, established combinatorial bounds for it, and obtained constructions of
codes with good, and sometimes almost optimal, rate along with list decod-

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 329-332, 2004.
© Springer-Verlag Berlin Heidelberg 2004

330 13 Concluding Remarks

ing algorithms that worked even when almost all (i.e., a fraction (1− ε)) of
the symbols are erased.

In the quest for either improving the rate, or achieving a similar rate with
simpler constructions, we then presented several novel constructions of codes
that shared the common thread of using expander graphs as a component to
redistribute symbols. This yielded codes of rate Ω(ε2) which were efficiently
list decodable using small lists even when most (i.e., a fraction (1− ε)) of the
symbols are in error. This construction was much simpler and the decoding
algorithms much faster than those for AG-codes, which also enjoy a simi-
lar list decodability property. We were also to obtain the optimal Ω(ε) rate
for such codes, but the list decoding algorithm had sub-exponential runtime
and the construction was probabilistic. En route obtaining these results, we
also introduced two important constructs: pseudolinear codes and juxtaposed
codes, which we believe will find applications in future constructions as well.

Using the ideas from our expander-based list decodable code construc-
tions, we were also able to obtain a construction of asymptotically good linear
time encodable and decodable codes for unique (not list) decoding that achieve
near-optimal trade-offs between rate and error-correction radius. Specifically,
we can construct codes over large alphabets that can be unique decoded up to
the optimal bound of (almost) half the Singleton bound in linear time. These
codes simultaneously achieve optimal rate, encoding time, and decoding time
(up to constant factors)! By concatenation with suitable binary inner codes,
we also obtained linear-time encodable/decodable binary codes that attain
the Zyablov bound, which is the best rate vs. distance trade-off known for
explicit concatenated codes.

13.2 Directions for Future Work

Although we managed to answer some of the basic algorithmic questions
concerning list decoding, a number of questions and directions remain open
for future work. We have already described many specific open questions in
the relevant chapters, but there a few which we highlight below, followed by
the mention of a broad, long-term goal where much work remains to be done.

13.2.1 Some Specific Open Questions

The following lists a couple of central combinatorial questions concerning list
decoding that are still unanswered (Open Questions 4.26 and 6.46):

– Is the Johnson radius J(δ) = (1 − √
1− 2δ)/2 the largest (relative) ra-

dius for which a binary linear code of relative distance δ is guaranteed
to have a polynomial number of codewords? We answered this question
in the affirmative in Chapter 4 assuming the GRH (Theorem 4.7). We

13.2 Directions for Future Work 331

also “almost” answered it without any assumptions in Theorem 4.25, and
the result is known to hold unconditionally for general, non-linear codes
(Proposition 4.1).

– Is (1 − √
r) the largest fraction of errors that can be list decoded with

polynomial-sized lists for a Reed-Solomon code of rate r?

We next list some questions concerning algorithmic list decodability and
explicit constructions of list decodable codes.

– Is there a polynomial time construction of codes over a large but constant-
sized alphabet which are list decodable up to a fraction (1 − ε) of errors
in polynomial time and which have rate asymptotically better than Ω(ε2)
(here ε > 0 is an arbitrarily small constant) ?

– The same question as above for binary codes, with decoding radius and
rate replaced by (1/2− ε) and Ω(ε4) respectively. (Question 8.18)

– Is there a constructive family of binary codes list decodable in polynomial
time from a fraction (1 − ε) of erasures and which have rate close to the
optimal bound of Ω(ε)? (Question 10.25)

– Is there a polynomial time algorithm to list decode concatenated codes
(with outer code being, say, a Reed-Solomon code) beyond the product
bound for every choice of outer and inner distances? (Question 8.17)

13.2.2 Construction of “Capacity-Approaching” List Decodable
Codes

The reader might recall the discussion in Chapter 5 (namely the one following
Theorem 5.4) about the fact that list decoding permits one to approach
the capacity of, say, the binary symmetric channel, even when the errors
are adversarially, and not randomly, effected. Specifically, for binary linear
codes, Theorem 5.8 shows that one can get within ε of the Shannon capacity
1−H(p) of the binary symmetric channel BSCp with cross-over probability
p, 0 < p < 1/2, using list decoding with lists of size 1/ε, even if the p fraction
of errors are adversarially chosen by the channel.

This result is highly non-constructive, and it is not clear how to con-
struct binary codes with rate close to the capacity 1 −H(p) and which are
list decodable from a fraction p of errors using lists of a constant, or even
polynomial, size. The requirement of an efficient list decoding algorithm for
up to a fraction p of errors makes the question even harder.

Towards the latter portions of this work, we studied this question focusing
on the high-noise regime, i.e., when the fraction p of errors equals (1/2−ε) for
some small constant ε > 0. (We also considered the case p = (1−ε) for codes
over a large alphabet, but let us now focus on the binary case.) In this case,
the “capacity result” says that there exist binary linear codes of rate σε2 list
decodable from a fraction (1/2− ε) of errors (using lists of size O(1/ε2)), for
an absolute constant σ > 0. For this question, even matching the quadratic

332 13 Concluding Remarks

dependence on ε, let alone getting close to the exact rate σε2, is a highly non-
trivial task. Our best constructive results achieve a rate of Ω(ε4), and we can
improve it to Ω(ε3) with a sub-exponential time list decoding algorithm.
There is much room for improvement; however, getting anywhere close to
the optimal Ω(ε2) rate seems extremely challenging, and such a result would
definitely be a major breakthrough.

All this applied only to the high-noise (and consequently, low-rate) regime.
In general, an interesting question is how close to the capacity (1 − H(p))
one can get for codes list decodable from a fraction p of errors, for other,
smaller, values of p. We are still a long way off from answering this question.
A constructive family of binary codes of rate (1 − H(p) − f(L)) and that
is efficiently list decodable from a fraction p of errors using lists of size L,
for any function f (let alone the function f(L) = 1/L as guaranteed by
the existential results), would be a remarkable result. Such a result would
represent a constructive version of the “capacity theorem” for list decoding.
We are no where close to such a result yet.

A good goal to attack first is to construct such binary codes with a rate
better than 1 − H(2p) for every value of p in the range 0 < p < 1/2 (for
1/4 < p < 1/2, we already know such constructions, so the interesting case is
when 0 < p < 1/4). The motivation for this question is the following. In order
to be able to unique decode a code up to a fraction p of errors, its relative
distance has to be at least 2p. The best rate known for such codes, even
non-constructively, is 1−H(2p), as given by the Gilbert-Varshamov bound.
Therefore, beating a rate of (1−H(2p)) would imply a constructive version
of list decoding that surpasses the best performance achievable using unique
decoding, even when the unique decoding result is allowed non-constructive
codes and exponential time decoding! There is some hope that a concatenated
code based on outer AG-code and a carefully chosen constant-sized inner
code, together with a decoding algorithm that uses the soft list decoder for
AG-codes with a careful choice of weights, can achieve this goal. But, further
work needs to be done to verify this intuition and formally prove such a
result.

In conclusion, we want to point out that the quest for better and better
codes that approach Shannon capacity in the probabilistic noise model has
led to a lot of ground-breaking research in coding theory and has seen signif-
icant successes. List decoding offers the potential of achieving rates close to
capacity even under adversarial noise models. As this book provides ample
evidence that list decoding can be efficiently performed for a wide variety of
codes, this now raises the hope that the analogous pursuit of constructive
capacity-approaching codes for list decoding as discussed above, might, after
all, be a tractable one, and one which will eventually meet with substantial
successes. The end result of such a pursuit, if it is successful, will of course
be dramatic, but in addition we believe that there are several novel code
constructions and algorithmic techniques to be discovered en route.

A GMD Decoding of Concatenated Codes

We present a proof of Proposition 11.9, restated below, which was used in
the construction of linear-time binary codes from Chapter 11. The result in
particular implies an efficient algorithm to decode concatenated codes up
to the product bound provided there exists an efficient errors-and-erasures
decoding algorithm for the outer code, and the decoding of the inner codes
can also be performed efficiently (which is usually easy since the dimension
of the inner code is typically small).

Proposition A.1. Let Cout be an (N, K)Q code where Q = qk and let Cin

be an (n, k)q code with minimum distance at least d. Let C be the (Nn, Kk)q

code obtained by concatenating Cout with Cin. Assume that there exists an
algorithm running in time Tin to uniquely decode Cin up to less than d/2
errors. Assume also the existence of an algorithm running in time Tout that
uniquely decodes Cout from S erasures and E errors as long as 2E + S <
D̃ for some D̃ ≤ dist(Cout). Then there exists an algorithm A running in
O(NTin + dTout) time that uniquely decodes C from any pattern of less than
dD̃
2 errors.

The proof is based on the same approach as the GMD decoding algorithm
due to Forney [60, 59] and its use by Justesen [110] to decode his explicit
asymptotically good code constructions. The exact style of presentation is
inspired by that of [180]. One technical aspect in the proof is that we show
that GMD decoding works with as many rounds of decoding of the outer
code as there are distinct weights passed by the inner stage. In particular
this implies that one has to invoke the outer errors-and-erasures decoding
algorithm at most �d/2�+ 1 times.

A.1 Proof

Let r ∈ [q]Nn be a received word which is at a Hamming distance less than
dD̃/2 from a codeword z of the concatenated code C. We divide r and z into
N blocks of n symbols each corresponding to the n encodings by the inner
codes. Denote by ri (resp. zi) the i’th block of r (resp. z), for 1 ≤ i ≤ N .
Let yi be the unique codeword of Cin with Δ(yi, ri) < d/2, if one exists.

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 333-335, 2004.
© Springer-Verlag Berlin Heidelberg 2004

334 A GMD Decoding of Concatenated Codes

The inner decoder can find such an yi if it exists in time Tin. If the inner
decoder fails to find any codeword within distance d/2 of ri, we set yi to
be an arbitrary codeword of Cin. For each yi, we compute a weight wi =
min{Δ(ri, yi), �d/2�}. The inner codewords y1, y2, . . . , yN together with the
weights w1, . . . , wN can all be found in NTin time.

Assume without loss of generality that w1 ≤ w2 ≤ · · · ≤ wN . Let s be
the number of distinct weights among w1, w2, . . . , wN . By the definition of
the weights, we clearly have s ≤ ⌊

d
2

⌋
+ 1. Let Sj be the block of (contiguous)

indices with the same value of wi for 1 ≤ j ≤ s, and denote by w̃j this
common weight. Let nj = |Sj |.

The decoding of r is now finished as follows. For each p, 1 ≤ p ≤ s,
we run the assumed errors-and-erasures decoding algorithm for Cout on the
received word 〈y1, y2, . . . , yN 〉, by declaring the yi’s in the last p blocks Sj ,
s − p + 1 ≤ j ≤ s, as erasures. If any of these decodings finds a message x
such that Δ(r,C(x)) < dD̃/2, we output the codeword C(x) and terminate
the algorithm, otherwise we report that there exists no codeword of C at a
Hamming distance less than dD̃/2 from r.

Since the algorithm runs the outer decoding algorithm s times, the total
time of the decoding algorithm is O(NTin + dTout), as claimed. We next
proceed to prove the correctness of the algorithm. That is, if there exists
z ∈ C with Δ(r, z) < dD̃/2, then the above algorithm will find and output z.

Let �i = Δ(ri, zi) — then by our definition of wi, we have �i ≥ wi. Also,
if yi
= zi (i.e., the inner decoder makes a mistake in position i), then clearly
�i ≥ d − wi (by triangle inequality). So if we denote by ai the indicator
variable for yi
= zi, we have �i ≥ ai(d−wi). Together with �i ≥ wi, this gives

�i ≥ (1− ai)wi + ai(d− wi) = wi + ai(d− 2wi) . (A.1)

We would like to prove that if the decoding failed to find the codeword
z, then we must have Δ(r, z) ≥ dD̃/2 errors. In our notation this means we
want to prove

N∑
i=1

�i ≥ D̃d

2
. (A.2)

Define the quantities Aj =
∑

i∈Sj
ai and Lj =

∑
i∈Sj

�i. We have by (A.1),
for 1 ≤ j ≤ s,

Lj ≥ njw̃j + Aj(d− 2w̃j) . (A.3)

Rewriting (A.2), recall that our goal is to prove that

1
d

s∑
j=1

Lj ≥ D̃

2
. (A.4)

Define xj = (1 − 2w̃j/d). Clearly 1 ≥ x1 > x2 > · · · > xs ≥ 0. We have from
(A.3) that

Lj

d
≥ nj

(1 − xj)
2

+ Ajxj . (A.5)

A.1 Proof 335

Define Δj = nj

2 −Aj . Using (A.5) above and the fact that
∑s

j=1 nj = N , we
get that in order to prove (A.4), it suffices to prove that

s∑
j=1

Δjxj ≤ N − D̃

2
. (A.6)

Now if each of the s errors-and-erasures outer decodings fail to find the
codeword z, then in each run the E +S/2 < D̃/2 condition must fail. In such
a case we must have, for each p, 1 ≤ p ≤ s,

p∑
j=1

Aj +
1
2
·

s∑
j=p+1

nj ≥ D̃

2
, (A.7)

which is the same as
p∑

j=1

Δj ≤ N − D̃

2
. (A.8)

Define xs+1 = 0. Multiplying the p’th equation above with the non-negative
quantity (xp − xp+1) for 1 ≤ p ≤ s, and adding up the resulting inequalities,
we get

s∑
j=1

Δjxj ≤ N − D̃

2
· x1 ≤ N − D̃

2
, (A.9)

which is exactly Equation (A.6) that we had to prove. �

References

1. Erik Agrell, Alexander Vardy, and Kenneth Zeger. Upper bounds for constant-
weight codes. IEEE Transactions on Information Theory, 46:2373–2395, 2000.

2. Rudolf Ahlswede. Channel capacities for list codes. Journal of Applied Prob-
ability, 10:824–836, 1973.

3. Andres Albanese, Johannes Blomer, Jeff Edmonds, Michael Luby, and Madhu
Sudan. Priority encoding transmission. IEEE Transactions on Information
Theory, 42(6):1737–1744, November 1996.

4. Michael Alekhnovich. Linear diophantine equations over polynomials and soft
decoding of reed-solomon codes. In Proceedings of the 43rd IEEE Symposium
on Foundations of Computer Science (FOCS), pages 439–448, November 2002.

5. Noga Alon, October 1999. Personal Communication.
6. Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ronny Roth.

Construction of asymptotically good low-rate error-correcting codes through
pseudo-random graphs. IEEE Transactions on Information Theory, 38:509–
516, 1992.

7. Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with
nearly optimal recovery. In Proceedings of the IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 512–519, 1995.

8. Noga Alon, Oded Goldreich, Johan H̊astad, and Réne Peralta. Simple con-
structions of almost k-wise independent random variables. Random Structures
and Algorithms, 3:289–304, 1992.

9. Noga Alon, Venkatesan Guruswami, Tali Kaufman, and Madhu Sudan. Guess-
ing secrets efficiently via list decoding. In Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 254–262, Jan-
uary 2002.

10. Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley and Sons,
Inc., 1992.

11. Sigal Ar, Richard Lipton, Ronitt Rubinfeld, and Madhu Sudan. Recon-
structing algebraic functions from mixed data. SIAM Journal on Computing,
28(2):488–511, 1999.

12. Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its ap-
plications. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, pages 485–495, 1997.

13. Emil Artin. Collected Papers. ed. S. Lang and J. T. Tate, Springer-Verlag,
1965. pp. viii-ix.

14. Michael Artin. Algebra. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991.
15. Alexei Ashikhmin, Alexander Barg, and Simon Litsyn. New upper bounds on

generalized weights. IEEE Transactions on Information Theory, 45(4):1258–
1263, 1999.

338 References

16. Alexei Ashikhmin, Alexander Barg, and Simon Litsyn. A new upper bound
on codes decodable into size-2 lists. In Ingo Althofer et al., editor, Numbers,
Information and Complexity, pages 239–244. Boston: Kluwer Publishers, 2000.

17. C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE
Transactions on Information Theory, 29:208–210, March 1983.

18. Daniel Augot and Lancelot Pecquet. A Hensel lifting to replace factoriza-
tion in list decoding of algebraic-geometric and Reed-Solomon codes. IEEE
Transactions on Information Theory, 46:2605–2613, November 2000.

19. László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has
subexponential time simulations unless EXPTIME has publishable proofs.
Computational Complexity, 3(4):307–318, 1993.

20. Alexander Barg and Gillés Zémor. Error exponents of expander codes. IEEE
Transactions on Information Theory, 48(6):1725–1729, 2002.

21. Richard Beigel. NP-hard sets are p-superterse unless R = NP. Technical
Report TR 4, Department of Computer Science, Johns Hopkins University,
1988.

22. Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCP’s and
non-approximability — towards tight results. SIAM Journal on Computing,
27(3):804–915, 1998.

23. Elwyn Berlekamp. Algebraic Coding Theory. McGraw Hill, New York, 1968.
24. Elwyn Berlekamp. Factoring polynomials over large finite fields. Mathematics

of Computations, 24:713–735, 1970.
25. Elwyn Berlekamp. Bounded distance +1 soft-decision Reed-Solomon decod-

ing. IEEE Transactions on Information Theory, 42(3):704–720, 1996.
26. Richard E. Blahut. Theory and Practice of Error Control Codes. Addison-

Wesley, Reading, Massachusetts, 1983.
27. Volodia M. Blinovsky. Bounds for codes in the case of list decoding of finite

volume. Problems of Information Transmission, 22(1):7–19, 1986.
28. Volodia M. Blinovsky. Asymptotic Combinatorial Coding Theory. Kluwer

Academic Publishers, Boston, 1997.
29. Volodia M. Blinovsky. Lower bound for the linear multiple packing of the

binary hamming space. Journal of Combinatorial Theory, Series A, 92(1):95–
101, 2000.

30. Bela Bollobás. Combinatorics. Cambridge University Press, Cambridge, U.K,
1986.

31. Dan Boneh. Finding smooth integers in short intervals using CRT decoding.
In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
pages 265–272, 2000.

32. Dan Boneh and Matthew Franklin. An efficient public-key traitor tracing
scheme. In Proc. Advances in Cryptography – Crypto ’99, pages 338–353.
Lecture Notes in Computer Science 1666, Springer-Verlag, 1999.

33. R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary
group codes. Information and Control, 3:68–79, 1960.

34. Andries E. Brouwer. Bounds on the size of linear codes. Chapter 4 in Handbook
of Coding Theory, V. S. Pless and W. C. Huffman (eds), Elsevier, pp. 295-461,
1998.

35. K. A. Bush. Orthogonal arrays of index unity. Ann. Math. Stat., 23:426–434,
1952.

References 339

36. Jin-Yi Cai, A. Pavan, and D. Sivakumar. On the hardness of the permanent.
In Proceedings of the 16th International Symposium on Theoretical Aspects of
Computer Science, March 1999.

37. Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Proc. Advances
in Cryptography – Crypto ’94, pages 257–270. Lecture Notes in Computer
Science 839, Springer-Verlag, 1994.

38. Fan Chung, Ron Graham, and Tom Leighton. Guessing secrets. The Electronic
Journal of Combinatorics, 8(1):R13, 2001.

39. Gérard Cohen, Simon Litsyn, and Gillés Zémor. Upper bounds on generalized
distances. IEEE Transactions on Information Theory, 40:2090–2092, 1994.

40. Gérard D. Cohen, Sylvia B. Encheva, and Hans G. Schaathun. On separating
codes. Technical report, Ecole Nationale Supérieure des Télécommunications,
Paris, 2001.

41. Henri Cohen. A Course in Computational Algebraic Number Theory. Graduate
Texts in Mathematics 138, Springer Verlag, Berlin, 1993.

42. D. E. R. Denning. Cryptography and Data Security. Reading, MA: Addison-
Wesley, 1983.

43. V. G. Drinfeld and Serge G. Vlădut. Number of points of an algebraic curve.
Func. Anal., 17:53–54, 1983.

44. Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximat-
ing the minimum distance of a linear code. IEEE Transactions on Information
Theory, 49(1):22–37, January 2003.

45. Ilya I. Dumer. Two algorithms for the decoding of linear codes. Problems of
Information Transmission, 25(1):24–32, 1989.

46. Ilya I. Dumer. Concatenated codes and their multilevel generalizations. In
V. S. Pless and W. C. Huffman, editors, Handbook of Coding Theory, volume 2,
pages 1911–1988. North Holland, 1998.

47. Peter Elias. Coding for two noisy channels. Information Theory, Third London
Symposium, pages 61–76, September 1955.

48. Peter Elias. List decoding for noisy channels. Technical Report 335, Research
Laboratory of Electronics, MIT, 1957.

49. Peter Elias. Zero error capacity under list decoding. IEEE Transactions on
Information Theory, 34(5):1070–1074, September 1988. Originally appeared
as Quarterly Progress Report, vol. 48, pp. 88-90, Research Laboratory of Elec-
tronics, MIT, January 1958.

50. Peter Elias. Error-correcting codes for list decoding. IEEE Transactions on
Information Theory, 37:5–12, 1991.

51. Noam D. Elkies. Explicit modular towers. In Proceedings of the 35th Annual
Allerton Conference on Communication, Control and Computing, pages 23–
32, 1997.

52. Noam D. Elkies. Excellent non-linear codes from Modular curves. In Pro-
ceedings of the 33rd Annual ACM Symposium on Theory of Computing, pages
200–208, July 2001.

53. Thomas Ericson and Victor Zinoviev. Spherical codes generated by binary
partitions of symmetric pointsets. IEEE Transactions on Information Theory,
41:107–129, 1995.

54. Uriel Feige, Michael Langberg, and Kobbi Nissim. On the hardness of approx-
imating NP witnesses. In Proceedings of the 3rd International Workshop on
Approximation Algorithms for Combinatorial Optimization (APPROX), pages
120–131, September 2000.

340 References

55. Uriel Feige and Carsten Lund. On the hardness of computing the permanent
of random matrices. In Proceedings of the 24th ACM Symposium on Theory
of Computing, pages 643–654, 1992.

56. Joan Feigenbaum. The use of coding theory in computational complexity.
In R. Calderbank, editor, Proceedings of Symposia in Applied Mathematics,
pages 203–229. American Mathematics Society, Providence, 1995.

57. G. L. Feng. Two fast algorithms in the Sudan decoding procedure. In Pro-
ceedings of the 37th Annual Allerton Conference on Communication, Control
and Computing, pages 545–554, 1999.

58. Gui-Liang Feng and Thammavarapu R. N. Rao. Decoding algebraic geometric
codes up to the designed minimum distance. IEEE Transactions on Informa-
tion Theory, 39(1):37–45, 1993.

59. G. David Forney. Concatenated Codes. MIT Press, Cambridge, MA, 1966.
60. G. David Forney. Generalized Minimum Distance decoding. IEEE Transac-

tions on Information Theory, 12:125–131, 1966.
61. G. David Forney. Exponential error bounds for erasure, list, and decision

feedback schemes. IEEE Transactions on Information Theory, 14(2):206–220,
March 1968.

62. Anna Gál, Shai Halevi, Richard J. Lipton, and Erez Petrank. Computing
from partial solutions. In Proceedings of the 14th Annual IEEE Conference
on Computation Complexity, pages 34–45, 1999.

63. Shuhong Gao and M. Amin Shokrollahi. Computing roots of polynomials over
function fields of curves. Coding Theory and Cryptography: From Enigma and
Geheimschreiber to Quantum Theory (D. Joyner, Ed.), Springer, pages 214–
228, 2000.

64. Arnaldo Garcia and Henning Stichtenoth. Algebraic function fields over finite
fields with many rational places. IEEE Transactions on Information Theory,
41:1548–1563, 1995.

65. Arnaldo Garcia and Henning Stichtenoth. A tower of Artin-Schreier extensions
of function fields attaining the Drinfeld-Vlădut bound. Inventiones Mathemat-
icae, 121:211–222, 1995.

66. Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behavior of
some towers of function fields over finite fields. Journal of Number Theory,
61(2):248–273, December 1996.

67. Peter Gemmell and Madhu Sudan. Highly resilient correctors for multivariate
polynomials. Information Processing Letters, 43(4):169–174, 1992.

68. Oded Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudoran-
domness. Number 17 in Algorithms and Combinatorics. Springer-Verlag, 1999.

69. Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way
functions. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pages 25–32, May 1989.

70. Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR Lemma.
Technical Report TR95-050, Electronic Colloquium on Computational Com-
plexity, March 1995. http://www.eccc.uni-trier.de/eccc.

71. Oded Goldreich, Dana Ron, and Madhu Sudan. Chinese remaindering with
errors. In Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, pages 225–234, 1999.

72. Oded Goldreich, Dana Ron, and Madhu Sudan. Chinese remaindering with er-
rors. IEEE Transactions on Information Theory, 46(5):1330–1338, July 2000.

References 341

73. Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials
with queries: The highly noisy case. SIAM Journal on Discrete Mathematics,
13(4):535–570, November 2000.

74. V. D. Goppa. Codes on algebraic curves. Soviet Math. Doklady, 24:170–172,
1981.

75. Dima Grigoriev. Factorization of polynomials over a finite field and the so-
lution of systems of algebraic equations. Translated from Zapiski Nauchnykh
Seminarov Lenningradskogo Otdeleniya Matematicheskogo Instituta im. V. A.
Steklova AN SSSR, 137:20–79, 1984.

76. Venkatesan Guruswami. Limits to list decodability of linear codes. In Pro-
ceedings of the 34th ACM Symposium on Theory of Computing (STOC), pages
802–811, 2002.

77. Venkatesan Guruswami. Constructions of codes from number fields. IEEE
Transactions on Information Theory, 49(3):594–603, March 2003.

78. Venkatesan Guruswami. List decoding from erasures: Bounds and code con-
structions. IEEE Transactions on Information Theory, 49(11):2826–2833,
November 2003.

79. Venkatesan Guruswami. Better Extractors for Better Codes? In Proceedings of
36th Annual ACM Symposium on Theory of Computing (STOC), June 2004.

80. Venkatesan Guruswami, Johan H̊astad, Madhu Sudan, and David Zuckerman.
Combinatorial bounds for list decoding. IEEE Transactions on Information
Theory, 48(5):1021–1035, 2002.

81. Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of
efficiently decodable codes. In Proceesings of the 42nd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 658–667, 2001.

82. Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for
unique decoding and new list-decodable codes over smaller alphabets. In
Proceedings of the 34th ACM Symposium on Theory of Computing (STOC),
pages 812–821, 2002.

83. Venkatesan Guruswami and Piotr Indyk. Linear-time encodable and list de-
codable codes. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing (STOC), pages 126–135, June 2003.

84. Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting
gilbert-varshamov bound for low rates. In Proceedings of the Fifteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 756–757,
2004.

85. Venkatesan Guruswami and Piotr Indyk. Linear time encodable/decodable
codes with near-optimal rate. IEEE Transactions on Information Theory,
2004. To appear.

86. Venkatesan Guruswami, Amit Sahai, and Madhu Sudan. Soft-decision decod-
ing of Chinese Remainder codes. In Proceedings of the 41st IEEE Symposium
on Foundations of Computer Science, pages 159–168, 2000.

87. Venkatesan Guruswami and Igor Shparlinski. Unconditional proof of tightness
of Johnson Bound. In Proceedings of the 14th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 754–755, 2003.

88. Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-
Solomon and algebraic-geometric codes. IEEE Transactions on Information
Theory, 45:1757–1767, 1999.

342 References

89. Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for cer-
tain concatenated codes. In Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing, pages 181–190, 2000.

90. Venkatesan Guruswami and Madhu Sudan. Decoding concatenated codes
using soft information. In Proceedings of the 17th IEEE Conference on Com-
putational Complexity, pages 148–157, 2002.

91. Venkatesan Guruswami and Madhu Sudan. Extensions to the Johnson bound.
Manuscript, February 2001.

92. Venkatesan Guruswami and Madhu Sudan. On representations of algebraic-
geometric codes. IEEE Transactions on Information Theory, 47(4):1610–1613,
May 2001.

93. Richard W. Hamming. Error Detecting and Error Correcting Codes. Bell
System Technical Journal, 29:147–160, April 1950.

94. Frank Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.
95. G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge Uni-

versity Press, 2nd edition, 1952.
96. Hermann J. Helgert. Alternant codes. Information and Control, 26:369–380,

1974.
97. T. Helleseth, T. Klordve, V. I. Levenshtein, and O. Ytrehus. Bounds on mini-

mum support weights. IEEE Transactions on Information Theory, 41(2):432–
440, 1995.

98. A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres (Paris), 2:147–156,
1959.

99. Christopher Hooley. On Artin’s conjecture. J. Reine Angew. Math., 225:209–
220, 1967.

100. Johan H̊astad and Mats Näslund. The security of all RSA and discrete log
bits. Journal of the ACM, 51(2):187–230, 2004.

101. I’ve Got a Secret. A classic ’50’s and ’60’s television gameshow. See
http://www.timvp.com/ivegotse.html.

102. Y. Ihara. Some remarks in the number of rational points of algebraic curves
over finite fields. J. Fac. Sci. Tokyo, 28:721–724, 1981.

103. Russell Impagliazzo. Hard-core distributions from somewhat hard problems.
In Proceedings of the 36th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 538–545, October 1995.

104. Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR Lemma. In Proceedings of the 29th Annual
ACM Symposium on Theory of Computing, pages 220–229, May 1997.

105. Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern
Number Theory. Springer-Verlag, 2 edition, 1990.

106. Thomas Jakobsen. Cryptanalysis of block ciphers with probabilistic non-linear
relations of low degree. In Hugo Krawczyk, editor, Proc. Advances in Cryptog-
raphy – Crypto ’98. Lecture Notes in Computer Science 1462, Springer-Verlag,
1998.

107. A. Joffe. On a set of almost deterministic k-independent random variables.
Annals of Probability, 2(1):161–162, 1974.

108. Selmer M. Johnson. A new upper bound for error-correcting codes. IEEE
Transactions on Information Theory, 8:203–207, 1962.

109. Selmer M. Johnson. Improved asymptotic bounds for error-correcting codes.
IEEE Transactions on Information Theory, 9:198–205, 1963.

References 343

110. Jφrn Justesen. A class of constructive asymptotically good algebraic codes.
IEEE Transactions on Information Theory, 18:652–656, 1972.

111. Jφrn Justesen. On the complexity of decoding Reed-Solomon codes (corresp.).
IEEE Transactions on Information Theory, 22(2):237–238, March 1976.

112. Jφrn Justesen. On bounds for list decoding. Manuscript, March 2001.
113. Jφrn Justesen and Tom Hφholdt. Bounds on list decoding of MDS codes.

IEEE Transactions on Information Theory, 47(4):1604–1609, May 2001.
114. Jφrn Justesen, Knud J. Larsen, Helge E. Jensen, Allan Havemose, and Tom

Hφholdt. Construction and decoding of a class of algebraic geometry codes.
IEEE Transactions on Information Theory, 35:811–821, July 1989.

115. Jφrn Justesen, Knud J. Larsen, Helge E. Jensen, and Tom Hφholdt. Fast
decoding of codes from algebraic plane curves. IEEE Transactions on Infor-
mation Theory, 38:111–119, 1992.

116. Erich Kaltofen. Polynomial-time reductions from multivariate to bi- and
univariate integral polynomial factorization. SIAM Journal on Computing,
14(2):469–489, 1985.

117. Erich Kaltofen. Polynomial factorization 1987–1991. In Proceedings of LATIN
’92, I. Simon (Ed.), Springer LNCS, volume 583, pages 294–313, 1992.

118. Richard Karp and Michael Rabin. Efficient randomized pattern-matching al-
gorithms. Technical report TR-31-81, Aiken Computation Laboratory, Harvard
University, 1981.

119. G. L. Katsman, Michael A. Tsfasman, and Serge G. Vlădut. Modular curves
and codes with a polynomial construction. IEEE Transactions on Information
Theory, 30:353–355, 1984.

120. Marcos Kiwi. Testing and weight distributions of dual codes. ECCC Technical
Report TR-97-010, 1997.

121. Ralf Koetter and Alexander Vardy. Algebraic soft-decision decoding of Reed-
Solomon codes. IEEE Transactions on Information Theory, 49(11):2809–2825,
November 2003.

122. H. Krishna, B. Krishna, K. Y. Lin, and J. D. Sun. Computational Number
Theory and Digital Signal Processing: Fast algorithms and error control tech-
niques. Boca Raton, FL: CRC, 1994.

123. S. Ravi Kumar and D. Sivakumar. Proofs, codes, and polynomial-time re-
ducibilities. In Proceedings of the 14th Annual IEEE Conference on Compu-
tation Complexity, 1999.

124. Arjen K. Lenstra. Factoring multivariate polynomials over finite fields. Journal
of Computer and System Sciences, 30(2):235–248, April 1985.

125. Arjen K. Lenstra and Hendrik W. Lenstra. Algorithms in number theory.
Handbook of Theoretical Computer Science (Volume A: Algorithms and Com-
plexity), Chap. 12, pages 673–715, 1990.

126. Arjen K. Lenstra, Hendrik W. Lenstra, and Lászlo Lovász. Factoring polyno-
mials with rational coefficients. Mathematische Annalen, 261:515–534, 1982.

127. Hendrik W. Lenstra. Codes from algebraic number fields. In
L.G.L.T. Meertens M. Hazewinkel, J.K. Lenstra, editor, Mathematics and
computer science II, Fundamental contributions in the Netherlands since 1945,
pages 95–104. North-Holland, Amsterdam, 1986.

128. V. I. Levenshtein. Universal bounds for codes and designs. Chapter 6 in
Handbook of Coding Theory, V. S. Pless and W. C. Huffman (Eds.), pages
499–648, 1998.

344 References

129. Richard Lipton. New directions in testing. In Distributed Computing and
Cryptography, volume 2 of DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, pages 191–202. AMS, 1991.

130. B. López. Codes on Drinfeld modular curves. In J. Buchmann et al, editor,
Coding Theory, Cryptography and Related Areas, pages 175–183. Springer,
Heidelberg, 1998.

131. Alex Lubotzky, R. Phillips, and Peter Sarnak. Ramanujan graphs. Combina-
torica, 8(3):261–277, 1988.

132. F. J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting
Codes. Elsevier/North-Holland, Amsterdam, 1981.

133. David M. Mandelbaum. On a class of arithmetic codes and a decoding algo-
rithm. IEEE Transactions on Information Theory, 21:85–88, 1976.

134. David M. Mandelbaum. Further results on decoding arithmetic residue codes.
IEEE Transactions on Information Theory, 24:643–644, 1978.

135. Y. I. Manin and Serge G. Vlădut. Linear codes and modular curves. J. Soviet.
Math., 30:2611–2643, 1985.

136. G. A. Margulis. Explicit group-theoretical constructions of combinatorial
schemes and their applications to the design of expanders and superconcen-
trators. Problems of Information Transmission, 24:39–46, 1988.

137. James L. Massey. Shift-register synthesis and BCH decoding. IEEE Transac-
tions on Information Theory, 15:122–127, January 1969.

138. R. Matsumoto. On the second step in the Guruswami-Sudan list decoding
algorithm for AG-codes. Technical Report of the Institute of Electronics, In-
formation and Communication Engineers (IEICE), pages 65–70, 1999.

139. Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey Jr., and Lloyd R.
Welch. New upper bounds on the rate of a code via the Delsarte-Macwilliams
inequalities. IEEE Transactions on Information Theory, 23:157–166, 1977.

140. Daniele Micciancio. Lecture notes on Lattices in Cryptography and
Cryptanalysis, University of California at San Diego. Available at
http://www-cse.ucsd.edu/ ˜ daniele/cse291fa99.html, Fall 1999.

141. Daniele Micciancio and Nathan Segerlind. Using prefixes to efficiently guess
two secrets. Manuscript, July 2001.

142. Elchanan Mossel and Christopher Umans. On the complexity of approximat-
ing the VC dimension. J. Comput. Syst. Sci., 65(4):660–671, 2002.

143. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient construc-
tions and applications. SIAM Journal on Computing, 22(4):838–856, 1993.

144. Moni Naor, Leonard Schulman, and Aravind Srinivasan. Splitters and near-
optimal derandomization. In Proceedings of the 36th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 182–191, 1995.

145. Rasmus R. Nielsen. Decoding concatenated codes using Sudan’s algorithm.
Manuscript submitted for publication, May 2000.

146. Rasmus R. Nielsen and Tom Hφholdt. Decoding Hermitian codes with Sudan’s
algorithm. In Proceedings of AAECC-13, LNCS 1719, pages 260–270, 1999.

147. Rasmus R. Nielsen and Tom Hφholdt. Decoding Reed-Solomon codes beyond
half the minimum distance. Coding Theory, Cryptography and Related areas,
(eds. Buchmann, Hoeholdt, Stichtenoth and H. tapia-Recillas), pages 221–236,
1999.

148. Noam Nisan. Extracting Randomness: How and Why – A survey. In Pro-
ceedings of the 11th Annual IEEE Symposium on Computational Complexity,
pages 44–58, 1996.

References 345

149. Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Com-
puter and System Sciences, 49(2):149–167, October 1994.

150. Vadim Olshevsky and M. Amin Shokrollahi. A displacement structure ap-
proach to efficient list decoding of algebraic geometric codes. In Proceedings
of the 31st Annual ACM Symposium on Theory of Computing, pages 235–244,
1999.

151. Lancelot Pecquet. List decoding of algebraic-geometric codes. Manuscript,
May 2001.

152. Ruud Pellikaan. On a decoding algorithm for codes on maximal curves. IEEE
Transactions on Information Theory, 35:1228–1232, 1989.

153. W. Wesley Peterson. Encoding and error-correction procedures for Bose-
Chaudhuri codes. IEEE Transactions on Information Theory, 6:459–470,
1960.

154. Irving S. Reed and Gustav Solomon. Polynomial codes over certain finite
fields. J. SIAM, 8:300–304, 1960.

155. Ronny Roth and Gitit Ruckenstein. Efficient decoding of Reed-Solomon codes
beyond half the minimum distance. IEEE Transactions on Information The-
ory, 46(1):246–257, January 2000.

156. Gitit Ruckenstein and Ronny Roth. Bounds on the list-decoding radius of
Reed-Solomon codes. SIAM J. Discrete Math., 17:171–195, 2003.

157. Uwe Schoning. A probabilistic algorithm for k-sat and Constraint Satisfaction
Problems. In Proceedings of the 40th IEEE Symposium on Foundations of
Computer Science, pages 410–414, 1999.

158. Yu L. Segalovich. Separating systems. Problems of Information Transmission,
30(2):105–123, 1994.

159. Ronen Shaltiel and Christopher Umans. Simple extractors for all min-
entropies and a new pseudo-random generator. In Proceedings of the 42nd
Annual Symposium on Foundations of Computer Science, 2001.

160. Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423, 623–656, 1948.

161. Claude E. Shannon. The zero error capacity of a noisy channel. IEEE Trans-
actions on Information Theory, 2(3):8–19, 1956.

162. Claude E. Shannon, Robert G. Gallager, and Elwyn R. Berlekamp. Lower
bounds to error probability for coding on discrete memoryless channels. In-
formation and Control, 10:65–103 (Part I), 522–552 (Part II), 1967.

163. Daniel Sheldon and Neal Young. Hamming approximation of NP witnesses.
Manuscript, 2003.

164. Ba-Zhong Shen. A Justesen construction of binary concatenated codes that
asymptotically meet the Zyablov bound for low rate. IEEE Transactions on
Information Theory, 39:239–242, 1993.

165. M. Amin Shokrollahi and Hal Wasserman. List decoding of algebraic-
geometric codes. IEEE Transactions on Information Theory, 45(2):432–437,
1999.

166. Kenneth Shum. A Low-Complexity Algorithm for Constructing Algebraic-
Geometric Codes Better than the Gilbert-Varshamov Bound. PhD thesis, Uni-
versity of Southern California, Los Angeles, 2000.

167. Kenneth Shum, Ilia Aleshnikov, P. Vijay Kumar, Henning Stichtenoth,
and Vinay Deolalikar. A low-complexity algorithm for the construction of
algebraic-geomteric codes better than the Gilbert-Varshamov bound. IEEE
Transactions on Information Theory, 47:2225–2241, 2001.

346 References

168. V. M. Sidelnikov. Decoding Reed-Solomon codes beyond (d− 1)/2 errors and
zeros of multivariate polynomials. Problems of Information Transmission,
30(1):44–59, 1994.

169. Alice Silverberg, Jessica Standon, and Judy Walker. Efficient traitor tracing
algorithms using list decoding. Manuscript, 2000.

170. Michael Sipser. Expanders, randomness, or time versus space. Journal of
Computer and System Sciences, 36(3):379–383, June 1988.

171. Michael Sipser and Daniel Spielman. Expander codes. IEEE Transactions on
Information Theory, 42(6):1710–1722, 1996.

172. D. Sivakumar. On membership comparable sets. Journal of Computer and
System Sciences, 59(2):270–280, October 1999.

173. Alexei N. Skorobogatov and Serge G. Vlădut. On decoding of algebraic geo-
metric codes. IEEE Transactions on Information Theory, 36:1051–1060, 1990.

174. M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor. Residue
Number System Arithmetic: Modern Applications in Digital Signal Processing.
New York: IEEE Press, 1986.

175. Daniel Spielman. Computationally Efficient Error-Correcting Codes and Holo-
graphic Proofs. PhD thesis, Massachusetts Institute of Technology, June 1995.

176. Daniel Spielman. Linear-time encodable and decodable error-correcting codes.
IEEE Transactions on Information Theory, 42(6):1723–1732, 1996.

177. Henning Stichtenoth. Algebraic Function Fields and Codes. Universitext,
Springer-Verlag, Berlin, 1993.

178. Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction
bound. Journal of Complexity, 13(1):180–193, 1997.

179. Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction
diameter. In Proceedings of the 35th Annual Allerton Conference on Commu-
nication, Control and Computing, 1997.

180. Madhu Sudan. A Crash Course in Coding Theory, Lecture no. 5. Slides
available from http://theory.lcs.mit.edu/ ˜ madhu, November 2000.

181. Madhu Sudan. List decoding: Algorithms and applications. SIGACT News,
31:16–27, 2000.

182. Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators
without the XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

183. Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko
Namekawa. A method for solving key equation for decoding Goppa codes.
Information and Control, 27:87–99, 1975.

184. Amnon Ta-Shma and David Zuckerman. Extractor Codes. In Proceedings of
the 33rd Annual ACM Symposium on Theory of Computing, pages 193–199,
July 2001.

185. Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. Extractors from Reed-
Muller codes. In Proceedings of the 42nd Annual Symposium on Foundations
of Computer Science, pages 638–647, 2001.

186. S. Toda. On polynomial-time truth-table reducibility of intractable sets to
p-selective sets. Math. Systems Theory, 24:69–82, 1991.

187. Luca Trevisan. Extractors and pseudorandom generators. Journal of the
ACM, 48(4):860–879, 2001.

188. Luca Trevisan. List-decoding using the XOR Lemma. In Proceedings of the
44th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 126–135, 2003.

References 347

189. M. A. Tsfasman and S. G. Vlădut. Geometric approach to higher weights.
IEEE Transactions on Information Theory, 41:1564–1588, 1995.

190. Michael A. Tsfasman, Serge G. Vlădut, and Thomas Zink. Modular curves,
Shimura curves, and codes better than the Varshamov-Gilbert bound. Math.
Nachrichten, 109:21–28, 1982.

191. Leslie Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, April 1979.

192. Leslie Valiant and Vijay Vazirani. NP is as easy as detecting unique solutions.
Theoretical Computer Science, 47:85–93, 1986.

193. J. H. van Lint. Introduction to Coding Theory. Graduate Texts in Mathematics
86, (Third Edition) Springer-Verlag, Berlin, 1999.

194. V. Wei. Generalized Hamming weights for linear codes. IEEE Transactions
on Information Theory, 37(5):1412–1418, 1991.

195. Victor K. Wei and Gui-Liang Feng. Improved lower bounds on the sizes of
error-correcting codes for list decoding. IEEE Transactions on Information
Theory, 40(2):559–563, 1994.

196. Lloyd R. Welch and Elwyn R. Berlekamp. Error correction of algebraic block
codes. US Patent Number 4,633,470, December 1986.

197. Edward J. Weldon, Jr. Justesen’s construction — the low-rate case. IEEE
Transactions on Information Theory, 19:711–713, 1973.

198. Stephen B. Wicker and Vijay K. Bhargava, editors. Reed-Solomon Codes and
Their Applications. John Wiley and Sons, Inc., September 1999.

199. John M. Wozencraft. List Decoding. Quarterly Progress Report, Research
Laboratory of Electronics, MIT, 48:90–95, 1958.

200. Xin-Wen Wu and Paul H. Siegel. Efficient list decoding of algebraic geometric
codes beyond the error correction bound. In Proceedings of the International
Symposium on Information Theory, June 2000.

201. Gillés Zémor. On expander codes. IEEE Transactions on Information Theory,
47(2):835–837, 2001.

202. Victor V. Zyablov. An estimate of the complexity of constructing binary linear
cascaded codes. Problemy Peridachi Informatsii, 15(2):58–70, 1971.

203. Victor V. Zyablov and Mark S. Pinsker. List cascade decoding. Problems
of Information Transmission, 17(4):29–34, 1981 (in Russian); pp. 236-240 (in
English), 1982.

Index

L-wise independence, 216

algebraic curve, 22, 122
Artin conjecture, 72
average-case hardness, 314, 315

bipartite Ramsey graph, 271
blocklength, 15
bounds
– Drinfeld-Vlădut, 60, 139
– Gilbert-Varshamov, 61, 85
– Johnson, 24, 35, 46, 76, 96, 188, 256
– Plotkin, 283
– Singleton, 21, 28, 294
– Tsfasman-Vlădut-Zink, 140
– Zyablov, 28, 298

channel capacity, 82, 257, 331
codes
– ε-biased, 303
– additive, 18, 294
– algebraic-geometric, 22, 60, 124
– alternant, 114
– asymptotically good, 17
– BCH, 70
– Chinese Remainder, 23, 151, 161
– concatenated, 12, 22, 63, 180, 266,

297
– constant-weight, 33
– cyclic, 70
– error-correcting, 2, 15
– extractor, 250, 317
– Goppa, 124
– Hadamard, 21, 63, 180, 314
– ideal-based, 26, 151, 155
– juxtaposed, 214, 244, 272
– linear, 17, 46
– MDS, 21, 50, 294

– multi-concatenated, 236

– near-MDS, 294

– Number Field, 24
– pseudolinear, 91, 216, 218, 258

– Reed-Muller, 21, 314

– Reed-Solomon, 11, 20, 65, 96

– – Generalized, 100
codeword, 2, 15

conditional expectations, 221

– derandomization, 221, 269

decoding, 2

– expander-based, 228, 288, 292, 295

– Generalized minimum distance, 172,
297, 333

– linear-time, 288, 294

– maximum likelihood, 9
– sub-linear time, 314

dimension, 16, 17

disperser, 210, 228, 317

distance, 2, 16, 153

– Hamming, 4, 16
– hardness of approximating, 46, 62

– relative, 16, 17, 60

divisor group, 124

encoding, 2, 18

– linear-time, 285, 297
erasures, 27, 117, 253, 258, 333

expander graph, 213, 284

extractor, 315

Fourier coefficient, 63, 68, 182

function field, 22, 122

generalized Hamming weight, 255, 265

350 Index

hardcore predicate, 311
hardness amplification, 313

ideal, 26, 149
– prime, 150
– size of, 152
inapproximability of NP witnesses, 322

lattices
– LLL algorithm, 167
– shortest vector problem, 167
list decoding, 7, 19, 155, 228, 265
list decoding radius, 19, 25, 36, 46, 79
– erasures, 253, 256
list recovering, 116, 215, 228

matrix
– generator, 17, 139
– parity check, 17
membership comparability, 318

permanent, 315
polynomial reconstruction, 100
– weighted, 119
pseudorandom generator, 318

Ramanujan graph, 285, 290
rate, 2, 16, 17
Riemann-Roch theorem, 124
root finding, 102, 111, 129

semirandom method, 88, 200
soft-decision decoding, 11, 41, 117, 120,

136, 165, 182

traitor tracing, 326

unique decoding, 6, 28

weight distribution, 18
– of cosets, 18, 206

	Frontmatter
	1 Introduction
	2 Preliminaries and Monograph Structure
	Part I Combinatorial Bounds
	3 Johnson-Type Bounds and Applications to List Decoding
	4 Limits to List Decodability
	5 List Decodability Vs. Rate

	Part II Code Constructions and Algorithms
	6 Reed-Solomon and Algebraic-Geometric Codes
	7 A Unified Framework for List Decoding of Algebraic Codes
	8 List Decoding of Concatenated Codes
	9 New, Expander-Based List Decodable Codes
	10 List Decoding from Erasures
	Interlude

	Part III Applications
	11 Linear-Time Codes for Unique Decoding
	12 Sample Applications Outside Coding Theory
	13 Concluding Remarks
	A GMD Decoding of Concatenated Codes

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

